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Today

! Compressive Sampling/Sensing
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Sampling Architectures
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Compressive Sampling

! What is the rate you need to sample at?
" At least Nyquist
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Compressive Sampling

! What is the rate you need to sample at?
" Maybe less than Nyquist…
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First: Compression

! Standard approach
" First collect, then compress 

" Throw away unnecessary data
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First: Compression

! Examples
" Audio – 10x

" Raw audio: 44.1kHz, 16bit, stereo = 1378 Kbit/sec
" MP3: 44.1kHz, 16 bit, stereo = 128 Kbit/sec

" Images – 22x
" Raw image (RGB): 24bit/pixel
" JPEG: 1280x960, normal = 1.09bit/pixel

" Videos – 75x
" Raw Video: (480x360)p/frame x 24b/p x 24frames/s + 44.1kHz 

x 16b x 2 = 98,578 Kbit/s
" MPEG4: 1300 Kbit/s
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First: Compression
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! Almost all compression algorithm use transform 
coding 
" mp3: DCT 
" JPEG: DCT 
" JPEG2000: Wavelet 
" MPEG: DCT & time-difference
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First: Compression

9

! Almost all compression algorithm use transform 
coding 
" mp3: DCT 
" JPEG: DCT 
" JPEG2000: Wavelet 
" MPEG: DCT & time-difference
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Sparse Transform
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Sparse Transform

11
Penn ESE 3400 Fall 2022 – Khanna
Adapted from M. Lustig, EECS Berkeley



Signal Processing Trends

! Traditional DSP # sample first, ask questions later
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Signal Processing Trends

! Traditional DSP # sample first, ask questions later
! Explosion in sensor technology/ubiquity has caused 

two trends:
" Physical capabilities of hardware are being stressed, 

increasing speed/resolution becoming expensive
" gigahertz+ analog-to-digital conversion
" accelerated MRI
" industrial imaging

" Deluge of data
" camera arrays and networks, multi-view target databases, 

streaming video…
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Signal Processing Trends

! Traditional DSP # sample first, ask questions later
! Explosion in sensor technology/ubiquity has caused 

two trends:
" Physical capabilities of hardware are being stressed, 

increasing speed/resolution becoming expensive
" gigahertz+ analog-to-digital conversion
" accelerated MRI
" industrial imaging

" Deluge of data
" camera arrays and networks, multi-view target databases, 

streaming video...

! Compressive Sensing # sample smarter, not faster
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Compressive Sensing/Sampling

! Standard approach
" First collect, then compress 

" Throw away unnecessary data
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Compressive Sensing

! Shannon/Nyquist theorem is pessimistic
" 2×bandwidth is the worst-case sampling rate — holds 

uniformly for any bandlimited data
" sparsity/compressibility is irrelevant
" Shannon sampling based on a linear model, compression 

based on a nonlinear model

! Compressive sensing
" new sampling theory that leverages compressibility
" key roles played by new uncertainty principles and 

randomness
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Sensing to Data
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Compressive Sampling

! Sample at lower than the Nyquist rate and still 
accurately recover the signal, and in most cases 
exactly recover
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Sparse signal in time Frequency spectrum

Compressive Sampling

! Sample at lower than the Nyquist rate and still 
accurately recover the signal, and in most cases 
exactly recover
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Undersampled in time

Compressive Sampling

! Sample at lower than the Nyquist rate and still 
accurately recover the signal, and in most cases 
exactly recover
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Undersampled in time

Compressive Sampling

! Sample at lower than the Nyquist rate and still 
accurately recover the signal, and in most cases 
exactly recover
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Undersampled in time Undersampled in frequency
(reconstructed in time with IFFT)

Compressive Sampling

! Sample at lower than the Nyquist rate and still 
accurately recover the signal, and in most cases 
exactly recover
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Undersampled in time

Compressive Sampling

! Sample at lower than the Nyquist rate and still 
accurately recover the signal, and in most cases 
exactly recover
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Undersampled in frequency
(reconstructed in time with IFFT)

Requires sparsity and incoherent sampling
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Compressive Sampling: Simple Example
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Compressive Sampling

! Sense signal M times
! Recover with linear 

program
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Example: Sum of Sinusoids

! Two relevant “knobs”
" percentage of Nyquist 

samples as altered by 
adjusting number of 
samples, M

" input signal duration, T
" Data block size 
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7% 14% 17.5%

20.9% 34.7% 51.9%

Example: Increasing M
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$ ferr,maxwithin 10 mHz
$ perr,maxdecreasing

Example: Increasing M
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T=5 T=10 T=15

T=30 T=60 T=120

Example: Increasing T
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$ ferr,maxdecreasing
$ perr,maxdecreasing

30

Example: Increasing T
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Numerical Recovery Curves

! Sense S-sparse signal of length N randomly M times

" In practice, perfect recovery occurs when M ≈ 2S for N ≈ 1000
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N=256
N=512
N=1024 



A Non-Linear Sampling Theorem

! Exact Recovery Theorem (Candès, R, Tao, 2004):
" Select M sample locations {tm} “at random” with

! Take time-domain samples (measurements)

! Solve

! Solution is exactly recovered signal with extremely 
high probability
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M > C∙μ2(Φ,Ψ)∙S∙log N



Biometric Example: Parkinson’s Tremors

! 6 Subjects of real tremor 
data

" collected using low intensity 
velocity-transducing laser 
recording aimed at reflective 
tape attached to the subjects’ 
finger recording the finger 
velocity

" All show Parkinson’s tremor 
in the 4-6 Hz range.  

" Subject 8 shows activity at 
two higher frequencies

" Subject 4 appears to have two 
tremors very close to each 
other in frequency 
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Compressive Sampling: Real Data
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$C=10.5, T=30
$ 20% Nyquist required samples 

Biometric Example: Parkinson’s Tremors
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$ Tremors detected 
within 100 mHz

$ randomly sample 
20% of the 
Nyquist required 
samples

Biometric Example: Parkinson’s Tremors
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Requires post processing to randomly sample!
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Admin

! Finish Lab 9 by next week
" Submit Google Colab PDF in Canvas
" Keep filled out Google Colab doc in drive

" You each have your own drive
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