ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

Day 9: September 17, 2014
MOS Model

You are Here

• Previously: simple models
 – Comfortable with basic functions and circuits
• This week and next (4 lectures)
 – Detail semiconductor, MOSFET phenomenology
 → Don’t Blink!
• Rest of terms
 – Implications

Today

• MOS Structure
• Basic Idea
• Semiconductor Physics
 – Metals, insulators
 – Silicon lattice
 – Band Gaps
 – Doping

MOS

• Metal Oxide Semiconductor

Oblique Side Top

Capacitor

• Charge distribution and field?

Metal – gate
Oxide – insulator separating gate from channel
 – Ideally: no conduction from gate to channel
Semiconductor – between source and drain
See why gate input capacitive?
Idea

- Semiconductor – can behave as metal or insulator
- Voltage on gate creates an electrical field
- Field pulls (repels) charge from channel
 - Causing semiconductor to switch conduction
 - Hence “Field-Effect” Transistor

Source/Drain Contacts

- Contacts: Conductors → metallic
 - Connect to metal wires that connect transistors

Fabrication

- Start with Silicon wafer
- Dope
- Grow Oxide (SiO₂)
- Deposit Metal
- Mask/Etch to define where features go

Dimensions

- Channel Length (L)
- Channel Width (W)
- Oxide Thickness (T_{ox})
 - Process named by minimum length
 - 22nm → L=22nm

Conduction

- Metal – conducts
- Insulator – does not conduct
- Semiconductor – can act as either
Why metal conduct?

- Electrons move
- Must be able to "remove" electron from atom or molecule

Conduction

Atomic States

- Quantized Energy Levels
- Must have enough energy to change level (state)

Thermal Energy

- Except at absolute 0
 - There is always free energy
 - Causes electrons to hop around
 -when enough energy to change states
 - Energy gap between states determines energy required

Silicon Atom

- How many valence electrons?
Silicon

- 4 valence electrons
 - Inner shells filled
 - Only outer shells contribute to chemical interactions

Silicon-Silicon Bonding

- Can form covalent bonds with 4 other silicon atoms

Silicon Lattice

- Forms into crystal lattice

http://www.webelements.com/silicon/crystal_structure.html

Outer Orbital?

- What happens to outer shell in Silicon lattice?

Energy?

- What does this say about energy to move electron?
State View

Energy

Valance Band – all states filled

State View

Energy

Conduction Band – all states empty

Valance Band – all states filled

Band Gap and Conduction

Insulator

\[E_v \]

8 ev

\[E_c \]

Metal

\[E_v \]

\[E_c \]

OR

Semiconductor

\[E_v \]

1.1 ev

\[E_c \]

Doping

- Add impurities to Silicon Lattice
 - Replace a Si atom at a lattice site with another

- E.g. add a Group 15 element
 - E.g. P (Phosphorus)
 - How many valence electrons?

Doping with P

- Add impurities to Silicon Lattice
 - Replace a Si atom at a lattice site with another

- E.g. add a Group 15 element
 - E.g. P (Phosphorus)
 - How many valence electrons?
Doping with P

- End up with extra electrons
 - Donor electrons
- Not tightly bound to atom
 - Low energy to displace
 - Easy for these electrons to move

Doped Band Gaps

- Addition of donor electrons makes more metallic
 - Easier to conduct

Localized

- Electron is localized
- Won’t go far if no low energy states nearby
- Increase doping concentration
 - Fraction of P’s to Si’s
 - Decreases energy to conduct

Electron Conduction

Capacitor Charge

- Remember capacitor charge
MOS Field?

- What does “capacitor” field do to the doped semiconductor channel?

- **Vgs=0**
 - No field
 - - -

 - **Vgs>0**
 - Conducts
 - - -

MOS Field Effect

- Charge on capacitor
 - Attract or repel charge in channel
 - Change the donors in the channel
 - Modulates conduction
 - Positive
 - Attracts carriers
 - Enables conduction
 - Negative?
 - Repel carriers
 - Disable conduction

Group 13

- What happens if we replace Si atoms with group 13 atom instead?
 - E.g. B (Boron)
 - Valance band electrons?

Doping with B

- End up with electron vacancies -- Holes
 - Acceptor electron sites
 - Easy for electrons to shift into these sites
 - Low energy to displace
 - Easy for the electrons to move
 - Movement of an electron best viewed as movement of hole

Hole Conduction

Doped Band Gaps

- Addition of acceptor sites makes more metallic
 - Easier to conduct

\[E_v = 0.045 \text{eV} \]

\[E_A = 1.1 \text{eV} \]
Field Effect?

- Effect of positive field on Acceptor-doped Silicon?
- Effect of negative field on Acceptor-doped Silicon?

MOSFETs

- Donor doping
 - Excess electrons
 - Negative or N-type material
 - NFET
- Acceptor doping
 - Excess holes
 - Positive or P-type material
 - PFET

MOSFET

- Semiconductor can act like metal or insulator
- Use field to modulate conduction state of semiconductor

Admin

- HW 3 due tomorrow
- New Ketterer combo on Piazza
- Friday: back here for lecture
 - MOS Transistor Basics
- HW4 is out