ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

Day 1: August 30, 2017
Introduction and Overview
Where I come from

- Analog VLSI Circuit Design (analog design)
- Convex Optimization (system design)
 - System Hierarchical Optimization
- Biomedical Electronics
- Biometric Data Acquisition (signal processing)
 - Compressive Sampling
- ADC Design (mixed signal)
- Low Energy Circuits (digital design)
 - Adiabatic Charging
Where I come from

- Analog VLSI Circuit Design (analog design)
- Convex Optimization (system design)
 - System Hierarchical Optimization
- Biomedical Electronics
- Biometric Data Acquisition (signal processing)
 - Compressive Sampling
- ADC Design (mixed signal)
- Low Energy Circuits (digital design)
 - Adiabatic Charging

CIRCUITS, CIRCUITS, CIRCUITS
MicroImplant: An Electronic Platform for Minimally Invasive Sensory Monitors

Signal Sensing and Processing

Energy Management

Data Collection and Transmission

Bare die
Ultra-capacitor
Bio-friendly package

Power
Data
Reader

Impedance Matching
Modulator (ASK)

Digital Control
Lecture Outline

- Course Overview
 - Motivating questions
 - What this course is about
 - Learning objectives
 - What you need to know

- Course Details
 - Course structure
 - Course policies
 - Course content
VLSI Design

Oracle SPARC M7 Processor

300 mm (12 in.)

Penn ESE 370 Fall 2017 - Khanna
Motivating Questions

- How fast can my computer run?
 - What limits this speed?
 - What can I do to make it run faster?
- How can I extend the battery life on my gadget?
 - How much energy must my computation take?
- How small can I make a memory?
 - Why does DRAM need to be refreshed?
 - What is DRAM? SRAM? EEPROM?
Motivating Questions (con’t)

- How many bits/second can I send over a communication link?
 - What limits this?
 - How do I maximize?

- How does technology scaling change these answers?
 - What can I rely on technology to deliver?
Sample Problems

What does this circuit do? How fast does it operate?
Sample Problems (con’t)

- What does this circuit do? How are A, B, C related?
Sample Problems (con’t)

- What’s wrong here? How do we fix it?
Limits?

- Consider a 22nm technology
- Typical gate with $W=3$, 2-input NOR
- Use chip in cell phone
- What prevents us from running 1 billion transistor chip at 10GHz?
Impact of Voltage?

- If have a chip running at 1GHz with a 1V power supply dissipating 1W.
- What happens to performance if we cut the power supply to 500mV?
 - Speed?
 - Power?
Course Deconstruction

- Circuit-Level Modeling, Design, and Optimization for Digital Systems

 - Look inside the digital gates (transistors, resistance, capacitance, inductance...)
 - Abstract and predict
 - Create
 - Make efficient (fast, low energy, small)
 - Compute, store, transmit binary values (0s, 1s)
What this course is about

- Modeling and abstraction
 - Predict circuit behavior
 - Well enough to know your design will work
 - …with given performance spec(ification)s
 - Performance, speed, energy, ….
 - Well enough to reason about design and optimization
 - What knob can I turn to make faster?
 - How much faster can I expect to make it?
What this course is about (con’t)

- Modeling and abstraction
 - Back-of-the-envelope
 - Simple enough to reason about
 - …without a calculator…
 - Sensitive to phenomenology
 - Able to think through the details
 - With computer assistance
 - …understanding even that is a simplified approximation
We are here.

Penn ESE370 Fall 2017 – Khanna
Learning Objectives

- Disciplines for robust digital logic and signaling
 - (e.g., regeneration, clocking)
- Where delay, energy, area, and noise arise in gates, memory, and interconnect
- Modeling these physical effects
 - back-of-the-envelope design
 - (e.g. RC and Elmore delay)
 - detailed simulation (e.g. SPICE)
Learning Objectives (con’t)

- Tradeoffs in performance specs
 - Among delay, energy, area, noise
- How to design and optimize
 - logic, memory, and interconnect structures
 - at the gate, transistor, and wire level
- How technology scales
 - impact on digital circuits and computer systems
What you need to know

- See “knowledge roundup” topics page linked from course page
- ESE 150 (CIS 240*)
 - Gates, Boolean logic, DeMorgan’s, gate optimization
- ESE 215
 - RLC circuit analysis
- Diagnostic Quiz on Canvas
 - Not graded, weighted as a homework assignment
 - Complete by Monday midnight (Labor Day – no class)
Review Session Poll

- Review material from ESE 150 and ESE 215?
 - Poll posted on Piazza
Course Structure

- **Course Staff (complete info on course website)**
- **Instructor: Tania Khanna**
 - Office hours – Wednesday 1-3:00 pm or by appointment
 - Email: taniak@seas.upenn.edu
 - Best way to reach me
- **TAs: Martin Deng**
 - Office hours – MT 6:30-8:30pm
Course Structure

- MWF 12-1pm Lecture
 - Will start 5 minutes late and end 5 minutes early
- Readings from textbook
- 4 lecture periods → Detkin Lab
- Find entire schedule on course webpage

<table>
<thead>
<tr>
<th>Week</th>
<th>Lect.</th>
<th>Date</th>
<th>Lecture</th>
<th>Slides</th>
<th>Due</th>
<th>Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8/30</td>
<td>W</td>
<td>Intro/Overview</td>
<td></td>
<td></td>
<td>1 through 1.2; review course webpage completely</td>
</tr>
<tr>
<td>2</td>
<td>9/1</td>
<td>F</td>
<td>Transistor Introduction (basics) and Gates from Transistors</td>
<td></td>
<td></td>
<td>Review ESE215; 6.2 through static properties in 6.2.1</td>
</tr>
<tr>
<td>2</td>
<td>9/4</td>
<td>M</td>
<td>Labor Day</td>
<td></td>
<td></td>
<td>Diagnostics Quiz (in Canvas)</td>
</tr>
<tr>
<td>2</td>
<td>9/6</td>
<td>W</td>
<td>Lab (Detkin): Gate from Discrete Transistors</td>
<td></td>
<td>HW 1</td>
<td>HW 2, Lab Instructions</td>
</tr>
<tr>
<td>3</td>
<td>9/8</td>
<td>F</td>
<td>Gates from Transistors (concl) and Transistor Introduction (first order)</td>
<td></td>
<td></td>
<td>3.1</td>
</tr>
<tr>
<td>3</td>
<td>9/11</td>
<td>M</td>
<td>Regenerative Property</td>
<td></td>
<td></td>
<td>3.2</td>
</tr>
<tr>
<td>3</td>
<td>9/13</td>
<td>W</td>
<td>Lab (Detkin): SPICE starter</td>
<td></td>
<td>HW 2</td>
<td>HW 3</td>
</tr>
<tr>
<td>5</td>
<td>9/15</td>
<td>F</td>
<td>Delay and RC Response</td>
<td></td>
<td></td>
<td>3.3</td>
</tr>
<tr>
<td>4</td>
<td>9/18</td>
<td>M</td>
<td>MOS Model</td>
<td></td>
<td>HW 4</td>
<td>2.1-2.3, 3.3.1</td>
</tr>
<tr>
<td>7</td>
<td>9/20</td>
<td>W</td>
<td>MOS Transistor Operating Regions: Part 1</td>
<td></td>
<td></td>
<td>3.3.2 (to pg 94)</td>
</tr>
<tr>
<td>8</td>
<td>9/22</td>
<td>F</td>
<td>MOS Transistor Operating Regions: Part 2</td>
<td></td>
<td></td>
<td>3.3.2 (to pg 103)</td>
</tr>
<tr>
<td>9</td>
<td>9/25</td>
<td>M</td>
<td>MOS Transistor Details</td>
<td></td>
<td></td>
<td>3.3.2 (remainder)</td>
</tr>
<tr>
<td>10</td>
<td>9/27</td>
<td>W</td>
<td>MOS Transistor Variation</td>
<td></td>
<td></td>
<td>3.3.3-3.4</td>
</tr>
</tbody>
</table>
Course Structure - Lectures

- Statistically speaking, you will do better if you come to lecture

- Better if interactive, **everyone** engaged
 - Asking and answering questions
 - Actively thinking about material

- Two things
 - Preclass exercises
 - Work during ~5 minutes before lecture starts
 - Primes you for topic of the day
 - Ask questions of individuals
Course Structure - Textbook

- Textbook
 - *Digital Integrated Circuits, A Design Perspective*, Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic, 2nd edition
 - Great reference text with great detail
 - REALLY!! useful for projects
Course Structure - SPICE

- Simulation Program with Integrated Circuit Emphasis
 - Industry standard analog circuit simulator
 - Non-linear, differential equation solver specialized for circuits
- Integrated circuits – simply impractical to build to debug
 - Must simulate to optimize/validate design
Course Structure - Assignments/Exams

- **Homework** – week long (8 total) [25%]
 - Due Wednesdays (mostly) at midnight
 - Submit in Canvas

- **Projects** – 2-3 weeks long (2 total) [30%]
 - Design oriented
 - On two main topics
 - Computation
 - Storage

- **Two midterms** [20%]
 - 2 hours in the evening

- **Final exam** [25%]
Course Structure - Websites

- Website (http://www.seas.upenn.edu/~ese370/)
 - Course calendar is used for all handouts (lectures slides, assignments, and readings)
 - Canvas used for assignment submission and grades
 - Piazza used for announcements and discussions

<table>
<thead>
<tr>
<th>Wk</th>
<th>Lect.</th>
<th>Date</th>
<th>Lecture</th>
<th>Slides</th>
<th>Due</th>
<th>Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8/30</td>
<td>W</td>
<td>Intro/Overview</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9/1</td>
<td>F</td>
<td>Transistor Introduction (basics) and Gates from Transistors</td>
<td></td>
<td></td>
<td>Review ESE215; 6.2 through static properties in 6.2.1</td>
</tr>
<tr>
<td>2</td>
<td>9/4</td>
<td>M</td>
<td>Labor Day</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9/6</td>
<td>W</td>
<td>Lab (Detkin): Gate from Discrete Transistors</td>
<td></td>
<td>HW 1</td>
<td>HW 2, Lab Instructions</td>
</tr>
<tr>
<td>3</td>
<td>9/8</td>
<td>F</td>
<td>Gates from Transistors (concl) and Transistor Introduction (first order)</td>
<td></td>
<td></td>
<td>3.1</td>
</tr>
<tr>
<td>3</td>
<td>9/11</td>
<td>M</td>
<td>Regenerative Property</td>
<td></td>
<td>1.3.2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9/13</td>
<td>W</td>
<td>Lab (Detkin): SPICE starter</td>
<td></td>
<td>HW 2</td>
<td>HW 3</td>
</tr>
<tr>
<td>4</td>
<td>9/15</td>
<td>F</td>
<td>Delay and RC Response</td>
<td></td>
<td></td>
<td>1.3.3</td>
</tr>
<tr>
<td>4</td>
<td>9/18</td>
<td>M</td>
<td>MOS Model</td>
<td></td>
<td>HW 4</td>
<td>2.1-2.3, 3.3.1</td>
</tr>
<tr>
<td>5</td>
<td>9/20</td>
<td>W</td>
<td>MOS Transistor Operating Regions: Part 1</td>
<td></td>
<td></td>
<td>3.3.2 (to pg 94)</td>
</tr>
<tr>
<td>5</td>
<td>9/22</td>
<td>F</td>
<td>MOS Transistor Operating Regions: Part 2</td>
<td></td>
<td></td>
<td>3.3.2 (to pg 103)</td>
</tr>
<tr>
<td>5</td>
<td>9/25</td>
<td>M</td>
<td>MOS Transistor Details</td>
<td></td>
<td></td>
<td>3.3.2 (remainder)</td>
</tr>
<tr>
<td>5</td>
<td>9/27</td>
<td>W</td>
<td>MOS Transistor Variation</td>
<td></td>
<td></td>
<td>3.3.3-3.4</td>
</tr>
</tbody>
</table>
Course Structure - Admin

- Use course calendar
 - Lectures online before class
 - Will post by 9am day of class
 - Reserve the right to change them
 - Homeworks linked
 - Homework 1 out now
 - Diagnostic quiz available now
 - Reading for whole term specified

- Take notes!
 - Especially on the examples we do in class
 - Slides have a lot of questions – not a lot of answers
Course Policies

See web page for full details

- Turn homework in on Canvas
 - Anything handwritten/drawn must be clearly legible
 - Submit CAD generated figures, graphs, results when specified
 - **NO LATE HOMEWORKS!**

- Individual work (HW & Project*)
 - CAD drawings, simulations, analysis, writeups
 - May discuss strategies, but acknowledge help
Course Content

- Logic (Computation) [8 weeks]
 - Combinational logic
 - Sequential logic
- Memory/Storage [2 weeks]
- Communication/Interconnect [3 weeks]
Course Content (con’t)

- Logic
 - Transistors → Gates
 - In Lab: build gate, measure delay
 - Regeneration
 - Delay
 - Area (no layout → ESE570)
 - Energy
 - Synchronous (flip-flops, clocking, dynamic)
 - Project 1: fast ripple-carry adder
Course Content (con’t)

- Memory/Storage
 - No Lab component
 - RAM Organization
 - Driving Large Capacitances
 - Signal amplification/regeneration
 - **Project 2:** design a SRAM Register File
Communication/Interconnect

- In Lab
 - Measure inductive ground bounce, crosstalk
 - Experiment with transmissions lines, termination

- Noise
 - Crosstalk
 - Inductive
 - Ionizing particles, shot

- Transmission Lines
Advice

- Course is hard (but valuable)
- Should be thinking about this material every day
- Go to office hours
- MUST READ TEXT!
- Learning is spread over all components
 - Lecture, reading, homeworks, projects, exams
- Must be able to get quantitative answers to get an A
 (maybe even for B)
Wrap up

- Admin
 - Find web, get text, assigned reading…
 - http://www.seas.upenn.edu/~ese370
 - https://piazza.com/upenn/fall2017/ese370/
 - https://canvas.upenn.edu/courses/

- Big Ideas/takeaway
 - Model (a.k.a. analysis and simulation) to enable real-life design

- Diagnostic Quiz in Canvas
 - Review as needed

- Remaining Questions?