Thus far...

- Understand how to model transistor behavior
- Given that we know its parameters
 - V_{dd}, V_{dd}, C_{dss}, W, L, μ ...

But...

- We don’t know its parameters (perfectly)
 - Fabrication parameters have nominal values and error range
 - Impact on I_D?
- Identically drawn devices differ because of fabrication techniques (e.g. process mismatch)
- Parameters change with environment (e.g. Temperature)
- Parameters change with time (aging)
Today

- Sources of Variation
 - Fabrication
 - Operation
 - Aging
- Designing to Account for Variation
 - Margin
 - Corners
 - Binning

Fabrication

Variation Types

- Many reasons why variation occurs and shows up in different ways
- Scales of variation
 - Wafer-to-wafer, die-to-die, transistor-to-transistor
- Correlations of variation
 - Systematic, spatial, random (uncorrelated)

Basic Fabrication: Two Steps

- (1) Transfer an image of the design to the wafer
- (2) Using that image (mask) as a guide, create the desired layers on silicon
 - Diffusion (add dopants to the silicon)
 - Oxide (create an insulating layer)
 - Metal (create a wire layer)

Wafer Scale: Process Shift

- Oxide thickness
- Doping level
- Layer alignment
- Growth and Etch rates and times
 - Depend on chemical concentrations
 - How precisely can we control these?
- Vary machine-to-machine, day-to-day
- Impact all transistors on wafer
Systematic Spatial Variation

- Parameters change consistently across wafer or chip based on location

- Sources
 - Chemical-Mechanical Polishing (CMP)
 - Dishing
 - Lens distortion

Random Transistor-to-Transistor

- Random dopant fluctuation
- Local oxide variation
- Line edge roughness
- Etch and growth rates
- Transistors differ from each other in random ways

Statistical Dopant Placement

Oxide Thickness and Interface roughness

[Asenov et al. TRED 2002]

Line Edge Roughness

Line Edge & Line-Width Roughness

- LER = lines of device features are not straight
- LWR = distance between lines is not uniform
- LER & LWR arise from the lithography and etching processes
- They are most pronounced in poly-gate patterning
- Effects
 - Increased I_{on}
 - Increased variation in V_T

Source: Kuhn et al.
Impact

- Changes parameters
 - W, L, t_{OX}, V_{th}, etc.
- Change transistor behavior
 - W increase?
 - L increase?
 - t_{OX} increase?
 - V_{th} increase?

\[
I_{DS} = V_{sat} C_{OX} W \left(V_{GS} - V_T - \frac{V_{DSAT}}{2} \right)
\]

\[
I_{DS} = \mu C_{OX} \left(\frac{W}{L} \right) \left(V_{GS} - V_T - \frac{V_{DS}^2}{2} \right)
\]

Example: V_{th}

- Many physical effects impact V_{th}
 - Doping, dimensions, roughness
- Behavior highly dependent on V_{th}

\[
I_{DS} = V_{sat} C_{OX} W \left(V_{GS} - V_T - \frac{V_{DSAT}}{2} \right)
\]

\[
I_{DS} = \mu C_{OX} \left(\frac{W}{L} \right) e^{\left(\frac{V_{GS} - V_T}{V_{TH}} \right)}
\]

Impact of V_{th} Variation?

- Higher V_{th}?
 - Not drive as strongly
 - $I_{DS} \propto (V_{gs} - V_{th})$
 - Performance?

Impact Performance

- $V_{th} \rightarrow I_{th} \rightarrow$ Delay ($R_{on} \ast C_{load}$)

V$_{th}$ Variability @ 65nm

[Bernstein et al, IBM JRD 2006]
Impact Performance

- $V_{th} \rightarrow I_{th} \rightarrow$ Delay ($R_{on} \times C_{load}$)

Impact of V_{th} Variation?

- Lower V_{th}?
 - Not turn off as well \Rightarrow leaks more

\[I_{DS} = I_{S} \left(\frac{W}{L} \right) \left(\frac{V_{GS} - V_{TH}}{V_{TH}/q} \right) \]

Operation

Temperature

- Voltage

Temperature Changes

- Different ambient environments
 - January in Maine
 - July in Philly
 - Air conditioned machine room
- Self heat from activity of chip
- Quality of heat sink (attachment thereof)
 - E.g. cooling fan

Thermal Profile for Processor

How does temperature impact on-current?

- High temperature
 - More free thermal energy
 - Easier to conduct
 - Lowers V_{th}
 - Increase rate of collision
 - Lower saturation velocity
 - Lower saturation voltage
 - Lower peak $I_{th} \Rightarrow$ slower down
- One reason don't want chips to run hot
How does temp impact leakage current?

- High temperature lowers V_{th}

$$I_{ds} = I_d \left(\frac{W}{L} \right) \left(\frac{V_{GS} - V_T}{N^2/2} \right)$$

Voltage

- Power supply isn’t perfect
- Differs from design to design
 - Board to board?
 - How precise is regulator?
- IR-drop in distribution
- Bounce with current spikes

Aging

Hot Carrier Injection

- Trap electrons in oxide
 - Increases V_{th}
NBTI

- Negative Bias Temperature Instability
 - Interface traps, Holes
- Long-term negative gate-source voltage
 - Affects PFET most
- Increase V_{th}
- Temperature dependent

$\Delta V(t) \propto \exp(-\beta V_G) \exp\left(-\frac{E_A}{kT}t\right)$

[Stott, FPGA2010]

Coping with Variation

- See a range of parameters
 - I_L: $I_{min} \sim I_{min}$
 - V_{th}: $V_{th, min} \sim V_{th, max}$

Variation

- Margin for expected variation
 - Must assume V_{th} can be any value in range
 - Speed \Rightarrow assume V_{th} slowest value

Variation

- $I_{on,min} = I_{on}(V_{th,max})$
 - $I_{on} \sim (V_G - V_{th})$

Impact of V_{th} Variation

- Higher V_{th}
 - Not drive as strongly
 - $I_{d,v,sat} \propto (V_{GS} - V_{th})$

- Lower V_{th}
 - Not turn off as well \Rightarrow leaks more

$\frac{I_{ds}}{I_L} = \frac{W}{L} \left(\frac{I_{on, min} - I_{off}}{I_{on, max} - I_{off}} \right)$

Measured Accelerated Aging
(Cyclone III, 65nm FPGA)
Impact

- Given
 - $V_{th,nom} = 250\, \text{mV}$
 - Standard deviation: $\sigma = 25\, \text{mV}$
- Probability of 100 transistor circuit in range when each has 96% prob.?
- …when each has 99.8% probability?

Variation

- See a range of parameters
 - L: $L_{\text{min}} - L_{\text{max}}$
 - V_{th}: $V_{th,\text{min}} - V_{th,\text{max}}$
- Validate design at extremes
 - Work for both $V_{th,\text{min}}$ and $V_{th,\text{max}}$?
 - Design for worst-case scenario

Margining

- Also margin for
 - Temperature
 - Voltage
 - Aging: end-of-life

Process Corners

- Many effects independent
- Many parameters
- With N parameters,
 - Look only at extreme ends (low, high)
 - How many cases?
- Try to identify the {worst,best} set of parameters
 - Slow corner of design space, fast corner
- Use corners to bracket behavior

Simple Corner Example

- $350\, \text{mV}$
- $150\, \text{mV}$
Process Corners

- Many effects independent
- Many parameters
- Try to identify the \{worst, best\} set of parameters
 - E.g., Lump together things that make slow
 - Vth, Vpp, temperature, Voltage
 - Try to reduce number of unique corners
- Slow corner of design space
- Use corners to bracket behavior

Worst-case Corner Model

- corners for analog applications
 - For modeling worst-case speed
 - Slow NMOS and slow PMOS(SS) corner
 - For modeling worst-case power
 - Fast NMOS and fast PMOS(FP) corner
- corners for digital applications
 - For modeling worst-case 1
 - Fast NMOS and slow PMOS(FS) corner
 - For modeling worst-case 0
 - Slow NMOS and fast PMOS(SF) corner

Worst-case Corner Model

- Advantages
 - Worst case corner models give designers the capability to simulate the pass/fail results of a typical design and are usually pessimistic.
- Disadvantages
 - The fixed-corner method is too wide
 - Some valid designs can not be accepted in worst-case corner model
 - The correlations between the device parameters are ignored

Statistical Corner Model

- For more realistic modeling for process variability than worst-case corner model.
 - Using data from different dies, wafers, and wafer lots collected over a long enough period of time to represents realistic process variability of the target technology
- The difference between statistical corner model and worst-case corner-model
 - Statistical corner model use the realistic PDF of the corresponding model parameter of its typical model
 - PDF is obtained from the distribution of a large set of production data
 - Statistical models can pass a valid design, which were rejected in worst-corner model

Range of Behavior

- Still get range of performances
- Any way to exploit the fact some are faster?

Speed Binning

- Probability Distribution

```
Sell
Premium
Sell
nominal
Sell
cheap
Discard
```
Big Idea

- Parameters Approximate
- Differ
 - Chip-to-chip, transistor-to-transistor, over time
- Robust design accommodates
 - Tolerance and Margins
 - Doesn’t depend on precise behavior

Midterm 1 - Content

- Lec 1 - 9
 - Identify CMOS/non-CMOS
 - Identify CMOS function
 - Any logic function \(\rightarrow \) CMOS gate
 - Noise Margins / Restoration
 - Circuit first order switching rise/fall times
 - Output equivalent resistance
 - Load capacitance
 - MOS Model
 - Identify transistor region of operation
 - Analysis with transistor IV models
 - MOS capacitance models

Midterm 1 - Logistics

- M 10/1: 7-9pm in Moore 216 (no lecture, office hours)
 - Individual closed-book exam
 - Calculators allowed, no smart phone calculators
 - If caught cheating, all parties will get a zero and be reported to Office of Student Conduct
- Old exams and solutions posted
 - Focus on 2015-2018 exams
 - 2010 disclaimer: only 1 midterm so covered more material
- Angelina review session: Sunday 1-3pm location TBD
 - Check Piazza for location updates
 - Selection of old exam questions will be worked out