Today's Question: How do we drive a large load $(e.g. C_{load} = 4 \times 10^4 C_0)$ with minimum delay? Detail buffer count and sizing.

Assume:

- velocity saturated sizing for gate drive; inverter sizing is: $W_n=2, W_p=2$
- Start with $C_{diff} = 0$ case (for simplicity)
- 1. If we had one inverter stage to size, how should it be sized?

- (a) Write delay equation from $R_0/2$ drive through driving C_{load} .
- (b) Symbolic expression for delay-minimizing W_N .
- (c) Concrete size, W_N , for $C_{load} = 4 \times 10^4 C_0$.
- 2. If we had k inverter stages to size, how should the each be sized?

- (b) Symbolic expression for delay-minimizing W_{Ni} .
- (c) Symbolic expression for total delay using solution above.

3. What number of stages, N, minimizes total delay?

ρ	γ
3	
4	