ESE3700: Circuit-Level Modeling, Design, and Optimization for Digital Systems

Lec 18: April 9, 2025 Memory Overview and Periphery

- Memory
 - Overview
 - Periphery
- □ Project 2 is on this

Memory Overview

Semiconductor Memory Classification

RWM		NVRWM	ROM
Random Access	Non-Random Access	EPROM E ² PROM	Mask-Programmed Programmable (PROM)
SRAM DRAM	FIFO LIFO Shift Register CAM	FLASH	

N words => N select signals Too many select signals

Memory Architecture: Decoders

Penn ESE 3700 Spring 2025 - Li

Problem: ASPECT RATIO or HEIGHT >> WIDTH

Latches/Register – Can Store a State

- Build register from pair of latches
- Control with non-overlapping clocks

Memory Periphery

- Decoders
- Column Circuitry
 - Bit-line Conditioning
 - Sense Amplifiers
 - Input/Output Buffers
- Control/Timing Circuitry

- \square 2ⁿ words of 2^m bits each
- Good regularity easy to design
- Very high density if good cells are used

Array Architecture

- \square 2ⁿ words of 2^m bits each
- Good regularity easy to design
- Very high density if good cells are used

Decoders

- \square 2ⁿ words of 2^m bits each
- Good regularity easy to design
- Very high density if good cells are used

□ $n:2^n$ decoder consists of 2^n n-input AND gates

- One needed for each row of memory
- Build AND from NAND or NOR gates

Static CMOS

Penn ESE 3700 Spring 2025 - Li

• For n > 4, NAND gates become slow

Break large gates into multiple smaller gates

• For n > 4, NAND gates become slow

Break large gates into multiple smaller gates

Many of these gates are redundant

- Factor out common
 - gates into predecoder
- Saves area
- Same path effort

Row Select: Precharge NAND

Row Select: Precharge NAND

Column Circuitry

& Bit-line Conditioning

Array Architecture

- \square 2ⁿ words of 2^m bits each
- Good regularity easy to design
- Very high density if good cells are used

- \square 2ⁿ words of 2^m bits each
- Good regularity easy to design
- Very high density if good cells are used

- Cell size accounts for most of array size
 - Reduce cell size at expense of complexity
- □ 6T SRAM Cell
 - Used in most commercial chips
 - Data stored in cross-coupled inverters
- **Read:**
 - Precharge BL, BL'
 - Raise WL
- Write:
 - Drive data onto BL, BL'
 - Raise WL

□ Some circuitry is required for each column

- Required: Bitline conditioning
 - Precharging
 - Driving input data to bitline
- Increased speed: Sense amplifiers
- Aspect ratio (square memory): Column multiplexing (AKA Column Decoders)

Precharge bitlines high before read operations

Precharge bitlines high before reads

Precharge bitlines high before reads

- □ What if pre-charged to Vdd/2?
 - Pros: reduces read-upset
 - Challenge: generate Vdd/2 voltage on chip

Column Capacitance Consequence

□ Preclass1: What is capacitance of a bitline?

□ W_{access} (pass transistor size), d rows, $\gamma = C_{diff0} / C_0$

- □ Preclass1: What is capacitance of a bitline?
 - □ W_{access} (pass transistor size), d rows, $\gamma = C_{diff0} / C_0$
- Preclass2: What is the delay for the cell to drive the bitline during a read?
 - \Box W_{buf} (inverter size in cell), R₀

□ Preclass1: What is capacitance of a bitline?

□ W_{access} (pass transistor size), d rows, $\gamma = C_{diff0} / C_0$

- Preclass2: What is the delay for the cell to drive the bitline during a read?
 - \square W_{buf} (inverter size in cell), R₀
- **D** Preclass3: Waccess=Wbuf=1, $\gamma = 1/2$
 - □ Delay for d=32, 512?

□ Preclass1: What is capacitance of a bitline?

□ W_{access} (pass transistor size), d rows, $\gamma = C_{diff0} / C_0$

- Preclass2: What is the delay for the cell to drive the bitline during a read?
 - W_{buf} (inverter size in cell), R_0
- **Conclude:** Can't size up cell \rightarrow driving bitline will be slow

Sense Amplifiers

- Bitlines have many cells attached
 - Ex: 32-kbit SRAM has 128 rows x 256 cols
 - 128 cells on each bitline
- **u** $t_{pd} \propto (C/I) \Delta V$
 - Even with shared diffusion contacts, 64C of diffusion capacitance (big C)
 - Discharged slowly through small transistors in each memory cell (small I)
- Sense amplifiers are triggered on small voltage swing (ΔV)

- Differential pair requires no clock
- But always dissipates static power

- Clocked sense amp saves power
- Requires sense_clk after enough bitline swing
- □ Isolation transistors cut off large bitline capacitance

Word Line Capacitance

□ Preclass4: What is capacitance of word line (row)?

- W_{access}- transistor width of column device
- w columns
- $\gamma = C_{diff0} / C_0$
- □ Preclass5: Delay driving word line?
 - W_{wldrive} Drive inverter

Column Drivers: Memory Bank

Penn ESE 3700 Spring 2025 - Li

Tristate Buffer

- □ Typically used for signal traveling, e.g. bus
- Ideally all devices connected to a bus should be disconnected except for active device reading or writing to bus
- Use high-impedance state to simulate disconnecting

Input	En	Ouptut
0	0	Z
1	0	Z
0	1	0
1	1	1

Memory with column decoder

Penn ESE 3700 Spring 2025 - Li

Penn ESE 3700 Spring 2025 - Li

Penn ESE 3700 Spring 2025 - Li

Penn ESE 3700 Spring 2025 - Li

- Memory for compact state storage
- □ Share circuitry across many bits
 - Minimize area per bit \rightarrow maximize density
- Aggressively use:
 - Pass transistors, Ratioing
 - Precharge, Amplifiers to keep area down

Project 2 out

- Work in teams of up to two
- Final report due Wednesday 4/30
- □ Wednesday 4/16 Midterm 2 (next week)
 - 1:45pm-3:45pm **in class**
 - Midterm 2 Review session (4/16) in class
 - Lectures 11-18
 - Closed note, calculator allowed
 - All old exams online
 - **2**015-2024

Do review your preclass!!

Prof. André DeHon (University of Pennsylvania)
 Prof. Tania Khanna (University of Pennsylvania)

Additional Reading (Optional)

ROM Memories

Problem: ASPECT RATIO or HEIGHT >> WIDTH

ROM Memories

Serial Access Memories

Serial access memories do not use an address

- Serial In Parallel Out (SIPO)
- Parallel In Serial Out (PISO)
- Shift Registers
- Queues (FIFO, LIFO)

1-bit shift register reads in serial data

• After N steps, presents N-bit parallel output

Parallel In Serial Out

• Load all N bits in parallel when shift = 0

• Then shift one bit out per cycle

Shift registers store and delay data
Simple design: cascade of registers

- □ Flip-flops aren't very area-efficient
- □ For large shift registers, keep data in SRAM instead
- Move read/write pointers to RAM rather than move data
 - Initialize read address to first entry, write to last

- *Queues* allow data to be read and written at different rates.
- □ Read and write each use their own clock, data
- Queue indicates whether it is full or empty
- Build with SRAM and read/write counters (pointers) storing read/write address

- First In First Out (FIFO)
 - Initialize read and write pointers to first element
 - Queue is EMPTY
 - On write, increment write pointer
 - If write almost catches read, Queue is FULL
 - On read, increment read pointer
 - If read catches write, Queue is EMPTY
- Last In First Out (LIFO)
 - Also called a *stack*
 - Use a single *stack pointer* for read and write