# ESE3700: Circuit-Level Modeling, Design, and Optimization for Digital Systems

Lec 19: April 21, 2025 Crosstalk





#### **C**rosstalk

- Characterization
  - Magnitude
- Avoiding
  - Design practices



- □ There are capacitors everywhere
- We already talked about
  - Wires modeled as a distributed RC network



Parasitic capacitances between terminals on transistor



# Capacitance Everywhere

### Potentially a capacitor between any two conductors

- On the chip
- On the package
- On the board
- □ All wires
  - Package pins
  - PCB traces (what you did in lab)
  - Cable wires
  - Bit/word lines



- □ ...decreases with conductor separation
- □ ...increases with size
- ...depends on dielectric

 $C = \mathcal{E}_r \mathcal{E}_0 \frac{A}{d}$ 



 Changes in voltage on one wire may couple through parasitic capacitance to an adjacent wire





• A wire has high capacitance to its neighbor.

- When the neighbor switches from 1-> 0 or 0->1, the wire tends to switch too.
- Called capacitive *coupling* or *crosstalk*.
- Crosstalk effects
  - Noise on non-switching wires
  - Increased delay on switching wires

# Qualitative





- □ What happens to undriven wire?
- □ Where do we have undriven wires?





#### □ What happens to a driven "neighbor" wire?

- One wire switches
- Neighbors driven but not switch
- What happens to neighbors?





- CMOS driven lines
- Clocked logic
  - Willing to wait to settle/evaluate
- Impact is on delay
  - May increase delay of transitions

# Quantitative













□ Step response for isolated wire?



Undriven Adjacent Wire (preclass 2)

 $\square$  V<sub>1</sub> transitions from 0 to V





 $\square$  V<sub>1</sub> transitions from 0 to V

• How big is the noise on V<sub>2</sub>?







 $\square$  V<sub>1</sub> transitions from 0 to V

• How big is the noise on V<sub>2</sub>?

 $V_{1} \quad I(t) = C \frac{dV(t)}{dt}$  $- V_{2} \quad V_{2}$ 





 $\Box$  V<sub>1</sub> transitions from 0 to V

• How big is the noise on V<sub>2</sub>?





\*\*\* spice deck for cell test\_cap\_undriven{sch} from library test



Penn ESE 3700 Spring 2025 - Li



\*\*\* spice deck for cell test\_cap\_undriven{sch} from library test





□ High capacitance to ground plane (C<sub>2</sub>)

Limits node swing from adjacent conductors





Driven Adjacent Wire (preclass 2)

□ What happens when neighbor line is driven?





□ What happens when neighbor line is driven?





Penn ESE 3700 Spring 2025 - Li







Magnitude of Noise on Driven Line (preclass 3)

- Magnitude of diversion depends on relative time constants
  - $\tau_1 << \tau_2$

- $\tau_1 >> \tau_2$
- $\tau_1 \sim = \tau_2$



Magnitude of Noise on Driven Line

- Magnitude of diversion depends on relative time constants
  - $\tau_1 << \tau_2$ 
    - full diversion, then recover
  - $\tau_1 >> \tau_2$ 
    - Drive capacitor (C<sub>2</sub>) faster than line 1 can change
      - little noise
  - $\tau_1 \sim = \tau_2$ 
    - Somewhere in between







Switching Line with Finite Drive

- What impact does the presence of the neighbour line have on the switching line?
  - All previous questions were about noise on nonswitching wire
  - Finite drive (R)





What happens if lines transition in opposite directions?





# What happens if lines transition in opposite directions?

- Must charge C<sub>1</sub> by 2V
- Or looks like 2C<sub>1</sub> between wires





□ What happens if lines transition in same direction?





- □ What happens if lines transition in same direction?
  - Looks like no coupling capacitor!





- $\Box$  V<sub>2</sub> switching at <sup>1</sup>/<sub>4</sub> frequency of V<sub>1</sub>
- $\square$  No crosstalk reference case where no V<sub>2</sub>





Penn ESE 3700 Spring 2025 - Li







Penn ESE 3700 Spring 2025 - Li

## Where Does it Arise?













### Will be capacitively coupled to many adjacent wires of varying degrees





- Smaller and higher density DRAMs leads to increase electromagnetic interactions between memory cells
- Rapid wordline switching can affect adjacent words causing them to flip





- □ *So what* if we have noise?
- If the noise is less than the noise margin, nothing happens
- Static CMOS logic will eventually settle to correct output even if disturbed by large noise spikes
  - But glitches cause extra delay
  - Also cause extra power from false transitions
- Dynamic logic never recovers from glitches
  - Can't correct mid-cycle, need precharge nodes
- Memories and other sensitive circuits also can produce the wrong result



- Goal: achieve delay, area, power goals with acceptable noise
- Degrees of freedom:



- Goal: achieve delay, area, power goals with acceptable noise
- Degrees of freedom:





- Goal: achieve delay, area, power goals with acceptable noise
- Degrees of freedom:



Penn ESE 3700 Spring 2025 - Li



- Long wires are inductive
  - Avoid them
  - Especially on power supplies
- Bypass capacitors help
- Capacitance is everywhere
- Clocked and driven wires
  - Slow down transitions
- Undriven wires voltage changed

Can cause spurious transitions Penn ESE 3700 Spring 2025 - Li





#### □ Project 2 out – START NOW!

- Final report due Friday 4/30
- In Detkin on Wednesday (4/23) for lab, no lecture
  - Will look at crosstalk



- Prof. André DeHon (University of Pennsylvania)
- Prof. Tania Khanna (University of Pennsylvania)