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6. Spatial Regression Models for Areal Data Analysis 
 
The primary models of interest for areal data analysis are regression models. In the same 
way that geo-regression models were used to study relations among continuous-data 
attributes of selected point locations (such as the California rainfall example), the present 
spatial regression models are designed to study relations among attributes of areal units 
(such as the English Mortality example in Section 1.3 above). The key difference is of 
course the underlying spatial structure of this data. In the case of geo-regression, the 
fundamental spatial assumption was in terms covariance stationarity, which together 
with multi-normality, enabled the full distribution of spatial residuals to be modeled by 
mean of variograms and their associated covariograms. In the present case, this 
stationarity assumption is replaced by spatial autogressive hypotheses that are based on 
specific choices of spatial weights matrices, as developed in Section 5. Here we start with 
the most fundamental spatial autogressive hypothesis in terms of regression residuals 
themselves. 
 
6.1 The Spatial Errors Model (SEM) 
 
The most direct analogue to geo-regression is the spatial regression already developed in 
Section 3 above. In particular, if we start with the regression model in (3.1) above, i.e., 
 

(6.1.1) 0 1
, 1,..,

k

i j ij ij
Y x u i n 


     

 
and postulate that dependencies among the regression residuals (errors), iu , at each areal 

unit i  are governed by the spatial autoregressive model in (3.5) and (3.6), i.e., by 
 
(6.1.2) 2, ~ (0, ) , 1,..,i ij j i ij

u w u N i n         

 
for some choice of spatial weights matrix, ( : , 1,.., )ijW w i j n   [with ( ) 0diag W  ] then 

the resulting model summarized in matrix form by (3.2) and (3.9) as: 
 
(6.1.3) Y X u    ,   2, ~ (0, )nu Wu N I      

 
is now designated as the Spatial Errors Model (also denoted as the SE-model or simply 
SEM).1  
 
As mentioned above, this constitutes the most direct application of the spatial 
autogressive model in Section 3. In essence it is hypothesized here that all spatial 
dependencies are among the unobserved errors in the model (and hence the name, SEM). 
In the case of the English Mortality data for example, it is clear that while the Jarman 
index includes many socio-economic and demographic factors influencing rates of 
myocardial infarctions, there are surely other factors involved. Moreover, since many of 

                                                 
1 See footnote 3 below for further discussion of this terminology. 
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these excluded factors will exhibit spatial dependencies, such dependencies will 
necessarily be reflected by the corresponding residual errors, u , in (6.1.3).  
 

Before considering other types of autoregressive dependencies, it is of interest to 
reformulate this model as an instance of the General Linear Regression Model. First, if 
for notational convenience, we now let 
 
(6.1.4) nB I W    

 
 then by expression (3.2.5) above, we may solve for u in terms of   as follows: 
 

(6.1.5) 1 1 2( ) , ~ (0, )n nu I W B N I         
 

Thus by the Invariance Theorem for multi-normal distributions, it follows at once from 
the multi-normality of   that u is also multi-normal with covariance given by 2 
 

(6.1.6) 1 1 1cov( ) cov( ) cov( )( )u B B B         
 

                         1 2 1 2 1 1 2 1 2( )( ) ( ) ( )nB I B B B B B V                    
 

where the spatial covariance structure, V , is given by3 
 

(6.1.7) 1( )V B B  
  

 

This in turn implies that (6.1.3) can be rewritten as 
 
(6.1.8) 2, ~ (0, )Y X u u N V    

 
which is seen to be an instance of the General Linear Regression Model in expression 
(7.1.8) of Part II, where in this case the matrix C is replaced by V  in (6.1.7). This will 

allow us to apply some of the GLS methods in Section 7.1.1 of Part II to SE-models.  
 
Finally, there is a third equivalent way of writing this SE-model which is also useful for 
analysis. If we simply substitute (6.1.5) directly into (6.1.3) and eliminate u  altogether, 
then this same model can be written as 
 
(6.1.9) 1 2, ~ (0, )nY X B N I      

 
Since all simultaneous relations, u Wu   , have been eliminated, expression (6.1.9) is 
usually called the reduced form of (6.3).  

                                                 
2 Here we have used the matrix identities, 1 1( ) ( )A A   , and, 1 1 1( )A B BA   , which are established, 

respectively, in expressions (A3.1.20) and (A3.1.18) of the Appendix. 
3 This terminology is motivated by the fact that all spatial aspects of covariance (6.1.6) are defined by V . 
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6.2  The Spatial Lag Model (SLM) 
 
An alternative linear model based on the spatial autoregressive model is obtained by 
assuming that these autoregressive relations are among the dependent variables 
themselves. If we again assume that the underlying spatial relations among areal units are 
representable by a spatial weights matrix, ( : , 1,.., )ijW w i j n   [with ( ) 0diag W  ], then 

the simplest way to write such a model in terms of  W  is by modifying expression (6.1.1) 
as follows, 
 

(6.2.1) 0 1
, 1,..,

k

i ih h j ij ih j
Y w Y x i n   


       

  
where again 2~ (0, ) , 1,..,i N i n   . Here the autoregressive term, 1

n
h ih hw Y  , reflects 

possible dependencies of iY  on values, hY , in other areal units. A standard example of 

(6.2.1) is in terms of housing prices. If the relevant areal units are say city blocks within a 
metropolitan area, and if iY  is interpreted as the average price (per square foot) of 

housing on block i , then in addition to other housing attributes ( : 1,.., )ijx j k , of block 

i , such prices may well be influenced by prices in surrounding blocks. So the relevant 
autoregressive relations here are among the housing prices, Y , and not the spatial 
residuals,  . Such relations are typically called spatial lag relations, which motivates the 
name spatial lag model (SLM).4 
 
 
6.2.1 Simultaneity Structure 
 
Before analyzing this model in detail, it is important to emphasize one fundamental 
difference between (6.1.1) and (6.2.1). Since the residuals are here assumed to be 
independent,5 one might at first glance conclude that (6.2.1) is nothing more than an OLS 
model with an added term, 1( )n

h ih hw Y  , where the unknown spatial dependency 

parameter,  , is simply the relevant “beta coefficient”. But the key points to notice are 

that (i) the hY  values are random variables, and moreover that (ii) they appear on both 

sides of the equation system (6.2.1), i.e., that iY  will also appear in equations for hY , 

whenever 0hiw  . Thus, in the same way that “opinions” 1( ,.., )nu u  among households in 

Figure 3.1 involved simultaneities, the housing prices 1( ,.., )nY Y  in the present illustration 

also involve simultaneities. So this is not simply another term in an OLS model.  

                                                 
4 At this point, it should be emphasized that (much like “variograms” versus “semivariograms” in the 
Kriging models of Part II), there is no general agreement regarding the names of various spatial regression 
models. For example, while we have reserved the term Spatial Autogressive Model (SAR) for the basic 
residual process in expression (3.9) above, this term is used by LeSage and Pace (2009) for the spatial lag 
model (SLM). Our present terminology follows that of the open-source software, GEODA, (to be discussed 
later) and has the advantage of clarifying where the basic spatial autoregressive model is being applied, i.e., 
to the error terms in SEM and to the dependent variable in SLM. 
5 Relaxations of this assumption will be considered in the “combined model” of Section 6.3.1 below. 
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This can be seen more clearly by formalizing this model in matrix terms and solving for 
its reduced form.  By employing the same notation as in (6.1.3), the Spatial Lag Model 
(SL-model or simply SLM) can be written as 
 
(6.2.2)  2, ~ (0, )nY WY X N I        

 
 
As a parallel to (6.2.1), we can rewrite this model by grouping Y terms in (6.2.2) as 
follows: 
 
(6.2.3) ( )nY WY X I W Y X             

 
                                                        B Y X      

 
                                                        1 1Y B X B       

 
which then yields the corresponding reduced form of the SL-model: 
 
 
(6.2.4) 1 1 2, ~ (0, )nY B X B N I        

 
 
In this reduced form, it should now be clear that the spatial lag term, WY , in (6.2.2) is 
not simply another “regression term”.  
 
Finally, one can also view this model as an instance of the General Linear Regression 
Model, though the correspondence is not as simple as that of SEM. In particular, if we 
now treat the spatial dependency parameter,  , as a known quantity, or more properly, if 
we condition (6.2.4) on a given value of  , then [in a manner similar to the Cholesky 
transformation in expression (7.1.16) of Part II] we can treat 
 
(6.2.5) 1X B X 

  

 
as a transformed data set, and again use (6.1.5) through (6.1.7) to write (6.2.4) as 
 
(6.2.6) 2, ~ (0, )Y X u u N V     

 
with spatial covariance structure, V , again given by (6.1.7). The key difference here is 

that   is no longer simply an unknown parameter in the covariance matrix, V , but now 

also appears in X  . So while (6.2.6) does permit the GLS methods in Section 7.1.1 in 
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Part II to also be applied to SL-models, these applications are somewhat more restrictive 
than for SE-models.  
 
6.2.2 Interpretation of Beta Coefficients 
 
One final difference between SE-models and SL-models that needs to be emphasized is 
the interpretation of the standard beta coefficients,  , in (6.1.8) versus (6.2.4) [or 
equivalently, (6.1.9) versus (6.2.6)]. Recall that one of the appealing features of OLS is 
the simple interpretation of beta coefficients. For example, consider an OLS version of 
the housing price example above, namely 
 

(6.2.7) 0 1
, 1,..,

k

i j ij ij
Y x i n  


     

 

with 2~ (0, ) , 1,..,i N i n   . If say 1ix  denotes the average age of housing on block i  

(as a surrogate for structural quality), then one would expect that 1  is negative. In 

particular since,  
 

(6.2.8) 1 0 1
( | ,.., ) , 1,..,

k

i i ik j ijj
E Y x x x i n 


    

 

the value of 1  should indicate the expected decrease in mean housing prices on block i  

resulting from a one-year increase in the average age of houses on block i . More 
generally, these marginal changes can be expressed as partial derivatives of the form: 
 
(6.2.9) 1( | ,.., ,.., ) , 1,.., , 1,..,i i ij ik jjix E Y x x x i n j k

     

 
and are seen to be precisely the corresponding j  coefficient for variable jx .  
 

Of course this OLS model ignores spatial dependencies between blocks. So if (6.2.7) is 
reformulated as an SE-model to account for such dependencies, say of the form in 
(6.1.8): 
 

(6.2.10) 0 11
, ( ,.., ) ~ (0, )

k

i j ij i nj
Y x u u u N V 


    

 

then since ( ) 0 , 1,..,iE u i n  , it follows that (6.2.8) and (6.2.9) continue to hold. Thus, 

while certain types of spatial dependencies have been accounted for, the interpretation of 
betas (such as 1  above) continues to hold. 
 

However, if the major spatial dependencies are among these price levels themselves, so 
that an SL-model is more appropriate, then the situation is far more complex. This can be 
seen by observing from the reduced form in (6.2.4), together with the “ripple” 
decomposition of 1( )nI W   in expression (3.3.26) above that 6 

                                                 
6 Here it is implicitly assumed that the convergence condition, | | 1 /

W
  , holds for  and W. 
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(6.2.11) 1 1 2 2( | ) ( ) ( )n nE Y X B X I W X I W W X               

 
                2 2X WX W X         
 
So the partial derivative in (6.2.9) cannot even be defined without specifying all 
attributes on all blocks. Moreover, while (6.2.8) implies that there are no interaction 
effects between blocks, i.e., that the partial derivatives of 1( | ,.., ,.., )i i ji kiE Y x x x  with 

respect to housing attributes on any other block are identically zero, this is no longer true 
in (6.2.11). For example, if the age of housing on block i  is increased, then this not only 
has a direct effect on expected mean prices in block i , but also has indirect effects on 
prices in all other blocks. Moreover, such indirect effects in turn affect prices in i . So this 
spatial ripple effect leads to complex interdependencies that must be taken into account 
when interpreting each beta coefficient. These effects can be summarized by analyzing 
(6.2.11) in more detail. To do so, we now employ the following notation. For any n m  
matrix, ( : 1,.., , 1,.., )ijA a i n j m   , let ( , ) ijA i j a  denote the ( )thij element of A, and let 

( , )A j  denote the thj  column of A. In these terms, (6.2.11) can be decomposed as 
follows: 
 

(6.2.12) 1 1 1

1 1
( | ) ( , ) [ ( , )]

k k

j jj j
E Y X B X B X j B X j      

 
       

 

                                    1 1

1 1 1 1
( , ) ( , ) ( , )

k n k n

j j hjj h j h
X h j B h x B h   

   
              

 

                                    1

1 1
( , )

n k

hj jh j
x B h 

 
    

 
so that each thi  row of ( | )E Y X  can be written as 
 

(6.2.13) 1

1 1
( | ) ( , )

n k

i hj jh j
E Y X x B i h 

 
    

 

In terms of this decomposition, it now follows that the desired partial derivatives can be 
obtained directly. First, as a parallel to (6.2.9) we see that 
 
(6.2.14) 1( | ) ( , )i jijx E Y X B i i 

   

 

So this marginal effect depends not just on j  but also on the thi  diagonal element of 
1B

 , which has the more explicit form 

 
(6.2.15) 1 2 2( , ) 1 ( , ) ( , )B i i W i i W i i        
 

                                  2 21 ( , )W i i    
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where the last line follows from the zero-diagonal assumption on W. But since 2 2 ( , )W i i  

together with all higher order effects are positive, it is clear that the effect of each j  is 

being inflated by these spatial effects, as described informally above. Moreover it is also 
clear from (6.2.13) that expected mean prices in i  are affected by housing attribute 
changes in other blocks. In particular, for attribute j  in block h, it now follows that 
 
(6.2.16) 1( | ) ( , )i j

hjx E Y X B i h 
   

 
Total effects on ( | )iE Y X  of attributes in the same areal unit i  are designated as direct 

effects by LeSage and Pace (2009, Section 2.7.1), and similarly, the total effects of 
attributes in different areal units are designated as indirect effects. For further analysis of 
these effects see LeSage and Pace (2009). 
 
  
6.3 Other Spatial Regression Models 
 
While there are many variations on the SE-model and SL-model above, we focus only on 
those that are of particular interest for our purposes. 
 
6.3.1 The Combined Model 
 
When developing the SL-model above, a question that naturally arises is why all 
unobserved factors should be treated as spatially independent. Clearly it is possible to 
have spatial autoregressive dependencies both among the Y  variables and the residuals, 
 . If we now distinguish between these by letting M and   denote the spatial weights 
matrix and spatial dependency parameter for the spatial-error component, then one may  
combine these two models as follows,7  
 
(6.3.1) 2, , ~ (0, )nY WY X u u Mu N I           

 
with corresponding reduced form given by 
 
(6.3.2) 1( ) ( )n nI W Y X I M       

 
               1 1 1( ) ( ) ( )n n nY I W X I W I M             

 
However, our primary interest in this model will be to construct comparative tests of 
SEM versus SLM as instances of the same model structure. Hence we shall focus on the 
special case with M W , 
 

                                                 
7 This model has been designated by Kelejian and Prucha (2010) as the SARAR(1,1) model, standing for 
Spatial Autoregressive Model with Autoregressive disturbances of order (1,1). 
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(6.3.3) 2, , ~ (0, )nY WY X u u Wu N I           , 

 
which we now designate as the combined model, with corresponding reduced form: 
 
(6.3.4) 1 1 1( ) ( ) ( )n n nY I W X I W I W            

 
So for any given spatial weights matrix, W, the corresponding SE-model (SL-model) is 
seen to be the special case of (6.3.3) with 0   ( 0  ).  
 
One additional point worth noting here is that while this combined model is 
mathematically well defined, and can in principle be used to obtain joint estimates of 
both   and  , these joint estimates are in practice often very unstable. In particular, 
since both   and   serve as dependency parameters for the same matrix, W, they in fact 
play very similar rolls in (6.3.4). But, as will be seen in Section 10.4 below, this 
instability will turn out to have little effect on the usefulness of this model for comparing 
SEM and SLM. 
 
6.3.2 The Spatial Durbin Model 
 
A second model that will prove useful for our comparisons of SEM and SLM can again 
be motivated by the housing price example above. In particular, if housing prices, iY , in 

block group i  are influenced by housing prices in neighboring block groups, then it is not 
unreasonable to suppose that they may be influenced by other housing attributes in these 
block groups. If so, then a natural extension of the SL-model in (6.2.1) would be to 
include these spatial effects as additional terms, i.e., 
 

(6.3.5)  0 1 1 1
, 1,..,

k n k

i ih h j ij ih j hj ih i j h j
Y w Y x w x i n    

   
          

 
Following Anselin (1988) this extended model is designated as the Spatial Durbin Model 
(also SD-model or simply SDM). This SD-model can be written in matrix form by letting 

1( ,.., )k    . However, one important additional difference is that (as in all previous 

models) the matrix, X, is defined to include the intercept term in (6.3.5). So here it is 
convenient to introduce the more specific notation, 
 

(6.3.6) [1 , ]n vX X    and   0

v







 
 

    

where both 1[ ( ,.., )]v kX x x  and v  now refer explicitly to the explanatory variables. 

With this additional notation, (6.3.5) can be written in matrix form as follows: 8 

                                                 
8 It is of interest to note here that in many ways it seems more natural to use X for the x variables, and to 
employ separate notation for the intercept. But while some authors have chosen to do so, including LeSage 
and Pace (2009) [compare (6.3.7) above with their expression (2.34)], the linear-model notation 
(Y X    ) is so standard that it seems awkward at this point to attempt to introduce new conventions.  
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(6.3.7) 2

01 , ~ (0, )n v v v nY WY X WX N I            

 
As pointed out by LeSage and Pace (2009, Sections 2.2, 6.1) this model is also useful for 
capturing omitted explanatory variables that may be correlated with the x variables. In 
this sense, it may serve to make the SL-model somewhat more robust. However, as 
developed more fully in Section 10.3 below, our main interest in this model is that it 
provides an alternative method for comparing SLM and SEM.  
 
 
6.3.3 The Conditional Autoregressive (CAR) Model  
 
There is one additional spatial regression model that should be mentioned in view of its 
wide application in the literature. While this model is conceptually similar to the SE-
model, it involves a fundamentally different approach from a statistical viewpoint. In 
terms of our housing price example, rather than modeling the joint distribution of all 
housing prices 1( ,.., )nY Y  among block groups, this approach focuses on the conditional 

distributions of each housing price, iY  , given all the others. The advantage of this 

approach is that it avoids all of the simultaneity issues that we have thus far encountered. 
In particular, since all univariate conditional distributions derivable from a multi-normal 
distribution are themselves normal, this approach starts off by assuming only that the 
conditional distribution of each price, iY , given any values ( : )hy h i  of all other prices 

( : )hY h i , is normally distributed. So these distributions are completely determined by 

their conditional means and variances. To construct these moments, we start by rewriting 
the reduced SE-model in (6.1.9) as follows: 
 
(6.3.8) 1 1 ( )Y X B Y X B B Y X                                                     

 
                                                ( )( )nI W Y X       

 
                                                ( )Y X W Y X         
 
                                                ( )Y X W Y X         
 
But if we now denote the thi  row of W by 1( ,.., )i i inw w w  , then the thi  line of this 

relation can be written as, 
 
(6.3.9) ( ) ( )i i i i i ih h h ih i

Y x w Y X x w Y x       


            

 
where the last equality follows from the assumption that 0iiw  . This suggests that if we 

if we now condition iY  on given values ( : )hy h i  of ( : )hY h i , then the natural 

conditional model of iY  to consider it the following: 
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(6.3.10) | ( : ) ( ) , 1,..,i h i ih h h ih i

Y y h i x w y x i n   


        

 
where again 2~ (0, ), 1,..,i N i n   . In this form, it is now immediate that 

 
 (6.3.11) [ | ( : )] ( ), 1,..,i h i ih h hh i

E Y y h i x w y x i n  


       

 
Moreover, since | ( : )i hY y h i  in (6.3.11) is simply a constant plus i  it also follows that  

| ( : )i hY y h i  must be normally distribibuted with the same variance as i , i.e., 

 
(6.3.12) 2var[ | ( : )] , 1,..,i hY y h i i n    

 
Such conditional models are usually designated as Conditional Autoregressive (CAR) 
models. The advantages of such conditional formulations are most evident in Bayesian 
spatial models, where standard “Gibbs sampling” procedures for parameter estimation 
require only the specification of all conditional distributions. However, such Bayesian 
models are beyond the scope of this NOTEBOOK. [For an excellent discussion of CAR 
models in a Bayesian context, see Banerjee, Carlin and Gelfand (2004, Section 3.3).] 
 
Thus our present analysis will focus on the Spatial Errors Model (SEM) and the Spatial 
Lag Model (SLM), which are by far the most commonly used spatial regression models. 
In the next section, we shall develop the basic methods for estimating the parameters of 
these models. This will be followed in Section 8 with a development of the standard 
regression diagnostics for these models. 


