Lecture Outline

- Data Converters
 - Anti-aliasing
 - ADC
 - Quantization
 - Practical DAC
- Noise Shaping

ADC

Anti-Aliasing Filter with ADC

Oversampled ADC

Oversampled ADC
Effect of Quantization Error on Signal

- Quantization error is a deterministic function of the signal
 - Consequently, the effect of quantization strongly depends on the signal itself

- Unless, we consider fairly trivial signals, a deterministic analysis is usually impractical
 - More common to look at errors from a statistical perspective
 - "Quantization noise"

- Two aspects
 - How much noise power (variance) does quantization add to our samples?
 - How is this noise distributed in frequency?

Quantization Error

- Model quantization error as noise
 \[x[n] \xrightarrow{\text{Quantizer}} \hat{x}[n] = x[n] + e[n] \]

- In that case:
 \[-\Delta/2 \leq e[n] < \Delta/2\]
 \[-X_m - \Delta/2 \leq x[n] \leq X_m - \Delta/2 \]
Quantization step Δ
- Quantization error has sawtooth shape.
- Bounded by $-\Delta/2, +\Delta/2$
- Ideally infinite input range and infinite number of quantization levels.

Ideal Quantizer

Quantization Error Statistics
- Crude assumption: $e_q(x)$ has uniform probability density.
- This approximation holds reasonably well in practice when
 - Signal spans large number of quantization steps
 - Signal is "sufficiently active"
 - Quantizer does not overload

Signal-to-Quantization-Noise Ratio
- For uniform B+1 bits quantizer
 \[SNR_Q = 10 \log_{10} \left(\frac{\sigma_x^2}{\sigma_e^2} \right) = 10 \log_{10} \left(\frac{12 \cdot 2^{2B} \sigma_e^2}{X_m^2} \right) \]
- \[SNR_Q = 6.02B + 10.8 - 20 \log_{10} \left(\frac{X_m}{\sigma_e} \right) \text{ Quantizer range /rms of amp} \]

Noise Model for Quantization Error
- Assumptions:
 - $e[n]$ as a sample sequence of a stationary random process
 - $e[n]$ is not correlated with $x[n]$
 - $e[n]$ not correlated with $e[m]$ where $m \neq n$ (white noise)
 - $e[n] \sim U[-\Delta/2, \Delta/2]$ (uniform pdf)
- Result:
 - Variance is: $\sigma_e^2 = \frac{\Delta^2}{12}$, or $\sigma_e^2 = \frac{2^{-2B} X_m^2}{12}$ since $\Delta = 2^{-B} X_m$
- Assumptions work well for signals that change rapidly, are not clipped, and for small Δ

Signal-to-Quantization-Noise Ratio
- Improvement of 6dB with every bit
- The range of the quantization must be adapted to the rms amplitude of the signal
 - Tradeoff between clipping and noise!
 - Often use pre-amp
 - Sometimes use analog auto gain controller (AGC)
Assuming full-scale sinusoidal input, we have

\[
\text{SQNR} = \frac{P_{\text{in}}}{P_{\text{noise}}} = \frac{1}{2} \left(\frac{\sigma_x^2}{\Delta x^2} \right)^2 = 1.5 \times 2^{10} = 6.02 \text{dB} + 1.76 \text{dB}
\]

<table>
<thead>
<tr>
<th>B (Number of Bits)</th>
<th>SQNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>50dB</td>
</tr>
<tr>
<td>12</td>
<td>74dB</td>
</tr>
<tr>
<td>16</td>
<td>96dB</td>
</tr>
<tr>
<td>20</td>
<td>122dB</td>
</tr>
</tbody>
</table>

If the quantization error is "sufficiently random", it also follows that the noise power is uniformly distributed in frequency.

References

Problem: Hard to implement sharp analog filter
Solution: Crop part of the signal and suffer from noise and interference

Quantization Noise with Oversampling
- Energy of \(x[n] \) equals energy of \(x[n] \)
 - No filtering of signal!
- Noise variance is reduced by factor of \(M \)

\[
\text{SNR}_Q = 6.02B + 10.8 \times 20 \log_{10} \left(\frac{X_m}{\sigma_q} \right) - 10 \log_{10} M
\]

For doubling of \(M \) we get 3dB improvement, which is the same as 1/2 a bit of accuracy
With oversampling of 16 with 8bit ADC we get the same quantization noise as 10bit ADC!
Practical DAC

\[x[n] = x(t)|_{t=nT} \rightarrow \text{sinc pulse generator} \rightarrow x_s(t) = \sum_{n=-\infty}^{\infty} x[n] \sin(\frac{t-nT}{T}) \]

- Scaled train of sinc pulses
- Difficult to generate sinc \(\rightarrow \) Too long!

\[h_0(t) \text{ is finite length pulse} \rightarrow \text{easy to implement} \]
- For example: zero-order hold

\[H_0(j\Omega) = Te^{-\Omega^2T} \sin(\frac{\Omega}{\Omega_c}) \]

Practical DAC

Zero-Order-Hold Interpolation

\[x_0(t) = \sum_{n=-\infty}^{\infty} x[n]h_0(t-nT) = h_0(t) \ast x_s(t) \]

Taking a FT:

\[X_0(j\Omega) = H_0(j\Omega)X(j\Omega) = \frac{H_0(j\Omega)}{T} \sum_{k=-\infty}^{\infty} X(j(\Omega - k\Omega_c)) \]

Practical DAC

Output of the reconstruction filter

\[X_s(j\Omega) = H_s(j\Omega) \ast X_0(j\Omega) \]

\[= \frac{H_s(j\Omega)}{T} \sum_{k=-\infty}^{\infty} X(j(\Omega - k\Omega_c)) \]

Practically:

\[X_s(j\Omega) / H_s(j\Omega) \]

Ideally:

\[X_s(j\Omega) H_{LP}(j\Omega) \]

Practically:
Practical DAC

\[X_d(j\Omega) \]

Practically:

\[X_d(j\Omega)H_0(j\Omega)H_1(j\Omega) \]

Practical DAC with Upsampling

\[x[n] \rightarrow \frac{1}{L} x_c[n] \rightarrow \text{LPF} \]

\[X_d(j\Omega) \]

Practically:

\[X_d(j\Omega)H_0(j\Omega)H_1(j\Omega) \]

Quantization Noise with Oversampling

\[T = \frac{\Omega_N M}{\sigma_e^2} \]

\[X_c(j\Omega) \]

\[\tilde{X}(e^{j\omega}) \]

\[X_d(e^{j\omega}) \]

Quantization Noise with Oversampling

- Energy of \(x_c[n] \) equals energy of \(x[n] \)
- No filtering of signal!
- Noise variance is reduced by factor of \(M \)

\[\text{SNR}_Q = 6.02B + 10.8 - 20 \log_{10} \left(\frac{X_m}{\sigma_e} \right) - 10 \log_{10} M \]

- For doubling of \(M \) we get 3dB improvement, which is the same as 1/2 a bit of accuracy
- With oversampling of 16 with 8bit ADC we get the same quantization noise as 10bit ADC!

Noise Shaping

- Idea: "Somehow" build an ADC that has most of its quantization noise at high frequencies
- Key: Feedback
Noise Shaping Using Feedback

\[Y(z) = E(z) + \frac{1}{1 + A(z)} \cdot X(z) \cdot A(z) \]

\[Y(z) = E(z) + \frac{1}{1 + A(z)} + X(z) \cdot \frac{A(z)}{1 + A(z)} \]

\[Y(z) = E(z)H(z) + X(z)H(z) \]

Objective
- Want to make STF unity in the signal frequency band
- Want to make NTF "small" in the signal frequency band
- If the frequency band of interest is around DC (0...\(f_B \)) we achieve this by making |\(A(z) \)| \(\gg 1 \) at low frequencies
- Means that NTF \(\ll 1 \)
- Means that STF \(\approx 1 \)

Discrete Time Integrator

\[v(k) = u(k) - u(k-1) \]

\[V(z) = z^{-1}U(z) + z^{-2}V(z) \]

- "Infinite gain" at DC (\(\omega = 0 \), \(z = 1 \))

First Order Sigma-Delta Modulator

\[Y(z) = E(z) + \frac{1}{1 + A(z)} + X(z) \cdot \frac{A(z)}{1 + A(z)} \]

- Output is equal to delayed input plus filtered quantization noise

NTF Frequency Domain Analysis

\[H_N(f) = 1 - z^{-1} \]

\[|H_N(f)|^2 = 2 \sin \left(\frac{\pi f}{f_s} \right)^2 \]

- "First order noise Shaping"
 - Quantization noise is attenuated at low frequencies, amplified at high frequencies

In-Band Quantization Noise

- Question: If we had an ideal digital lowpass, what is the achieved SQNR as a function of oversampling ratio?
- Can integrate shaped quantization noise spectrum up to \(f_B \) and compare to full-scale signal

\[P_{\text{noise}} = \int \frac{2 + 2}{12 \cdot f_s} \left(2 \sin \left(\frac{\pi f}{f_s} \right) \right)^2 df \]

\[\approx \frac{\pi^2}{12} \cdot \frac{2}{f_s} \]

\[\approx \frac{\pi^2}{3} \cdot \frac{1}{M^3} \]
In-Band Quantization Noise

- Assuming a full-scale sinusoidal signal, we have
 \[
 \text{SQNR} = 10 \log \left(\frac{P_{\text{max}}}{P_{\text{noise}}} \right) = 1.5 \times (2^8 - 1) \times \frac{3}{12} \times M^3
 \]
 \[
 \approx 1.76 \times 6.02B - 5.2 + 30 \log(M) \quad \text{[dB]} \quad \text{(for large B)}
 \]
- Each 2x increase in M results in 8x SQNR improvement
- Also added $\frac{1}{2}$ bit resolution

Digital Noise Filter

- Increasing M by 2x, means 3-dB reduction in quantization noise power, and thus $\frac{1}{2}$ bit increase in resolution
 - "$\frac{1}{2}$ bit per octave"
- Is this useful?
- Reality check
 - Want 16-bit ADC, $f_S = 1$MHz
 - Use oversampled 8-bit ADC with digital lowpass filter
 - 8-bit increase in resolution necessitates oversampling by 16 octaves
 \[
 f_s \geq 2 \cdot f_S \cdot M = 2 \cdot 1 \text{MHz} \cdot 2^{16}
 \geq 131 \text{GHz}
 \]

SQNR Improvement

- Example Revisited
 - Want 16-bit ADC, $f_S = 1$MHz
 - Use oversampled 8-bit ADC, first order noise shaping and (ideal) digital lowpass filter
 - SQNR improvement compared to case without oversampling is -5.2dB + 30log(M)
 - 8-bit increase in resolution (48 dB SQNR improvement) would necessitate $M \approx 60$ at $f_S = 120$MHz
- Not all that bad!

<table>
<thead>
<tr>
<th>M</th>
<th>SQNR improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>31dB (~6 bits)</td>
</tr>
<tr>
<td>256</td>
<td>67dB (~11 bits)</td>
</tr>
<tr>
<td>1024</td>
<td>85dB (~14 bits)</td>
</tr>
</tbody>
</table>

Higher Order Noise Shaping

- Lth order noise transfer function
 \[
 H_f(z) = \left(1 - z^{-1}\right)^L
 \]

Big Ideas

- Data Converters
 - Oversampling to reduce interference and quantization noise → increase ENOB (effective number of bits)
 - Practical DACs use practical interpolation and reconstruction filters with oversampling
- Noise Shaping
 - Use feedback to reduce oversampling factor

Admin

- HW 4 due tonight at midnight
 - Typo in code in MATLAB problem, corrected handout
 - See Piazza for more information
- HW 5 posted after class
 - Due in 1.5 weeks 3/3