Compressive Sensing
Today

- Compressive Sampling/Sensing
What is the rate you need to sample at?

- At least Nyquist
Compressive Sampling

- What is the rate you need to sample at?
 - Maybe less than Nyquist…
First: Compression

- Standard approach
 - First collect, then compress
 - Throw away unnecessary data
First: Compression

- **Examples**
 - **Audio – 10x**
 - Raw audio: 44.1kHz, 16bit, stereo = 1378 Kbit/sec
 - MP3: 44.1kHz, 16 bit, stereo = 128 Kbit/sec
 - **Images – 22x**
 - Raw image (RGB): 24bit/pixel
 - JPEG: 1280x960, normal = 1.09bit/pixel
 - **Videos – 75x**
 - Raw Video: (480x360)p/frame x 24b/p x 24frames/s + 44.1kHz x 16b x 2 = 98,578 Kbit/s
 - MPEG4: 1300 Kbit/s
Almost all compression algorithm use transform coding

- mp3: DCT
- JPEG: DCT
- JPEG2000: Wavelet
- MPEG: DCT & time-difference
First: Compression

- Almost all compression algorithms use transform coding
 - mp3: DCT
 - JPEG: DCT
 - JPEG2000: Wavelet
 - MPEG: DCT & time-difference
Sparse Transform

\[
\begin{array}{c}
\text{DCT}
\end{array}
\]
Sparse Transform

Difference
Sparsity

\[N \text{ pixels} \]

\[K \ll N \]
large wavelet coefficients
(blue = 0)

\[N \text{ wideband signal samples} \]

\[K \ll N \]
large Gabor (TF) coefficients

Penn ESE 531 Spring 2019 - Khanna
Signal Processing Trends

- Traditional DSP \(\rightarrow\) sample first, ask questions later
Signal Processing Trends

- Traditional DSP \(\rightarrow\) sample first, ask questions later
- Explosion in sensor technology/ubiquity has caused two trends:
 - Physical capabilities of hardware are being stressed, increasing speed/resolution becoming expensive
 - gigahertz+ analog-to-digital conversion
 - accelerated MRI
 - industrial imaging
 - Deluge of data
 - camera arrays and networks, multi-view target databases, streaming video…
Signal Processing Trends

- Traditional DSP \(\rightarrow\) sample first, ask questions later
- Explosion in sensor technology/ubiquity has caused two trends:
 - Physical capabilities of hardware are being stressed, increasing speed/resolution becoming expensive
 - gigahertz\(^+\) analog-to-digital conversion
 - accelerated MRI
 - industrial imaging
 - Deluge of data
 - camera arrays and networks, multi-view target databases, streaming video...
- Compressive Sensing \(\rightarrow\) sample smarter, not faster
Compressive Sensing/Sampling

- Standard approach
 - First collect, then compress
 - Throw away unnecessary data
Compressive Sensing

- Shannon/Nyquist theorem is pessimistic
 - $2 \times \text{bandwidth}$ is the worst-case sampling rate — holds uniformly for any bandlimited data
 - sparsity/compressibility is irrelevant
 - Shannon sampling based on a linear model, compression based on a nonlinear model

- Compressive sensing
 - new sampling theory that leverages compressibility
 - key roles played by new uncertainty principles and randomness
Sensing to Data

- Sensor
- "Fast" ADC
- Data compression
- "Compressive" sensor
- "Slow" ADC
Compressive Sampling

- Sample at lower than the Nyquist rate and still accurately recover the signal, and in most cases exactly recover
Compressive Sampling

- Sample at lower than the Nyquist rate and still accurately recover the signal, and in most cases exactly recover.
Compressive Sampling

- Sample at lower than the Nyquist rate and still accurately recover the signal, and in most cases exactly recover

Undersampled in time
Compressive Sampling

- Sample at lower than the Nyquist rate and still accurately recover the signal, and in most cases exactly recover

Undersampled in time
Compressive Sampling

- Sample at lower than the Nyquist rate and still accurately recover the signal, and in most cases exactly recover.
Compressive Sampling

- Sample at lower than the Nyquist rate and still accurately recover the signal, and in most cases exactly recover.

Requires sparsity and incoherent sampling.
Compressive Sampling: Simple Example
Compressive Sampling

- Sense signal M times
- Recover with linear program

$$
\min_{\omega} \sum_{\omega} |\hat{g}(\omega)| \quad \text{subject to} \quad g(t_m) = f(t_m), \ m = 1, \ldots, M
$$
Compressive Sampling

\[\hat{f}(\omega) = \sum_{i=1}^{K} a_i \delta(\omega_i - \omega) \iff f(t) = \sum_{i=1}^{K} a_i e^{i\omega_i t} \]

- Sense signal M times
- Recover with linear program

\[\min_{\omega} \sum |\hat{g}(\omega)| \quad \text{subject to} \quad g(t_m) = f(t_m), \quad m = 1, \ldots, M \]
Example: Sum of Sinusoids

- Two relevant “knobs”
 - percentage of Nyquist samples as altered by adjusting number of samples, \(M \)
 - input signal duration, \(T \)
- Data block size
Example: Increasing M

![Graphs showing increasing M with percentages 7%, 14%, 17.5%, 20.9%, 34.7%, and 51.9%]
Example: Increasing M

- $f_{\text{err, max}}$ within 10 mHz
- $p_{\text{err, max}}$ decreasing
Example: Increasing T

- T=5
- T=10
- T=15
- T=30
- T=60
- T=120
Example: Increasing T

- $f_{err,max}$ decreasing
- $p_{err,max}$ decreasing
Numerical Recovery Curves

- Sense S-sparse signal of length N randomly M times

In practice, perfect recovery occurs when $M \approx 2S$ for $N \approx 1000$
A Non-Linear Sampling Theorem

- **Exact Recovery Theorem (Candès, R, Tao, 2004):**
 - Select M sample locations \(\{t_m\} \) “at random” with
 \[
 M \geq \text{Const} \cdot S \log N
 \]
- Take time-domain samples (measurements)
 \[
 y_m = x_0(t_m)
 \]
- Solve
 \[
 \min_x \| \hat{x} \|_{\ell_1} \quad \text{subject to} \quad x(t_m) = y_m, \quad m = 1, \ldots, M
 \]
- Solution is exactly recovered signal with extremely high probability
A Non-Linear Sampling Theorem

- **Exact Recovery Theorem** (Candès, R, Tao, 2004):
 - Select M sample locations $\{t_m\}$ “at random” with
 \[M \geq \text{Const} \cdot S \log N \]
- Take time-domain samples (measurements)
 \[y_m = x_0(t_m) \]
- Solve
 \[\min_{x} \|x\|_{\ell_1} \text{ subject to } x(t_m) = y_m, \ m = 1, \ldots, M \]
- Solution is **exactly** recovered signal with extremely high probability
 \[M > C \cdot \mu^2(\Phi, \Psi) \cdot S \cdot \log N \]
Biometric Example: Parkinson’s Tremors

6 Subjects of real tremor data

- collected using low intensity velocity-transducing laser recording aimed at reflective tape attached to the subjects’ finger recording the finger velocity
- All show Parkinson’s tremor in the 4-6 Hz range.
- Subject 8 shows activity at two higher frequencies
- Subject 4 appears to have two tremors very close to each other in frequency
Compressive Sampling: Real Data
Biometric Example: Parkinson’s Tremors

- $C=10.5$, $T=30$
- 20% Nyquist required samples
Biometric Example: Parkinson’s Tremors

- Tremors detected within 100 mHz
- randomly sample 20% of the Nyquist required samples

Requires post processing to randomly sample!
Implementing Compressive Sampling

- Devised a way to randomly sample 20% of the Nyquist required samples and still detect the tremor frequencies within 100mHz
 - Requires post processing to randomly sample!

- Implement hardware on chip to “choose” samples in real time
 - Only write to memory the “chosen” samples
 - Design random-like sequence generator
 - Only convert the “chosen” samples
 - Design low energy ADC
CS Theory

Why does is work?
Sampling

- Signal x is K-sparse in basis/dictionary Ψ
 - WLOG assume sparse in space domain $\Psi = I$

Sampling

\[N \times 1 \text{ measurements} \quad = \quad \Phi = I \quad \text{sparse signal} \]

K nonzero entries
Compressive Sampling

- When data is sparse/compressible, can directly acquire a **condensed representation** with no/little information loss through linear **dimensionality reduction**

\[y = \Phi x \]

\[M \times 1 \text{ measurements} = \Phi \]

\[M \times N \]

\[N \times 1 \text{ sparse signal} \]

\[K \text{ nonzero entries} \]

\[K < M \ll N \]
How Can It Work?

- Projection Φ
 - not full rank...
 - $M < N$

... and so
- loses information in general

- Ex: Infinitely many x’s map to the same y
 - (null space)
How Can It Work?

- Projection Φ not full rank...

$M < N$

... and so loses information in general

- But we are only interested in *sparse* vectors
How Can It Work?

- Projection Φ not full rank...

$$M < N$$

... and so loses information in general

- But we are only interested in \textit{sparse} vectors

- Φ is effectively $M \times K$
How Can It Work?

- Projection Φ not full rank...

$$M < N$$

... and so loses information in general

- But we are only interested in **sparse** vectors

- **Design** Φ so that each of its $M \times K$ submatrices are full rank (ideally close to orthobasis)
 - **Restricted Isometry Property (RIP)**
RIP

- Draw Φ at **random**
 - iid Gaussian
 - iid Bernoulli ± 1

- Then Φ has the RIP with high probability provided

$$M = O(K \log(N/K)) \ll N$$
CS Signal Recovery

- **Goal:** Recover signal x from measurements y

- **Problem:** Random projection Φ not full rank (ill-posed inverse problem)

- **Solution:** Exploit the sparse/compressible *geometry* of acquired signal x
CS Signal Recovery

- Random projection Φ not full rank

- Recovery problem: given $y = \Phi x$ find x

- **Null space**

- Search in null space for the “best” x according to some criterion
 - ex: least squares

$(N-M)$-dim hyperplane at random angle
L₂ Signal Recovery

- **Recovery:**
 (ill-posed inverse problem)

- **Optimization:**

- **Closed-form solution:**

- **Wrong answer!**

\[
\hat{x} = \arg \min_{y=\Phi x} \|x\|_2
\]

\[
\hat{x} = (\Phi^T \Phi)^{-1} \Phi^T y
\]
L₀ Signal Recovery

- Recovery:
 (ill-posed inverse problem)

- Optimization:

- Correct!

\[\hat{x} = \arg \min_{y = \Phi x} \|x\|_0 \]

"find sparsest vector in translated nullspace"

- But NP-Complete alg
L₁ Signal Recovery

- **Recovery:** (ill-posed inverse problem)
 \[
 \text{given } y = \Phi x \quad \text{find } x \quad (\text{sparse})
 \]

- **Optimization:**
 \[
 \hat{x} = \arg \min_{y=\Phi x} \|x\|_1
 \]

- **Convexify** the ℓ_0 optimization

- **Correct!**

- **Polynomial time** alg
 (linear programming)

- **Much recent alg progress**
 - greedy, Bayesian approaches, ...
Universality

- Random measurements can be used for signals sparse in any basis

\[x = \Psi \alpha \]
Universality

- Random measurements can be used for signals sparse in *any* basis

\[y = \Phi x = \Phi \Psi \alpha \]
Universality

- Random measurements can be used for signals sparse in any basis

\[y = \Phi x = \Phi \Psi \alpha = \Phi' \alpha \]
Reference Slide

dsp.rice.edu/cs
Big Ideas

- Compressive Sampling
 - Integrated sensing/sampling, compression and processing
 - Based on sparsity and incoherency
Admin

- Final Project due – Apr 30th
 - TA advice – “The report takes time. Leave time for it.”
 - No late accepted. Turn into Canvas on time.
- Last day of TA office hours – Apr 30th
 - Piazza still available
- Last day of Tania office hours – May 8th
- Final Exam Review Session – May 10th (time TBD)
 - Watch Piazza for details
- Final Exam – May 13th
Final Exam Admin

- Final – 5/13
 - Location Levine 101
 - Starts at exactly 3:00pm, ends at exactly 5:00pm (120 minutes)
 - Cumulative – covers entire course
 - Except data converters, noise shaping (lec 12), adaptive filters (lec 23), wavelet transform (lec 25), and compressive sampling (lec 26)
 - Closed book
 - Data/Equation sheet provided by me
 - 2 8.5x11 two-sided cheat sheets allowed
 - Calculators allowed, no smart phones
 - Old exams posted
 - TA Review session on 5/10, Time and Place TBD
 - Watch Piazza for details