University of Pennsylvania Department of Electrical and System Engineering Digital Signal Processing

ESE531, Spring 2017	Final	Wednesday, May 3

- 4 Problems with point weightings shown. All 4 problems must be completed.
- Calculators allowed.
- Closed book = No text allowed.
- One two-sided 8.5x11 cheat sheet allowed.
- Final answers here on the question sheet.
- Additional workspace in "blue" book. Note where to find work in "blue" book if relevant.
- Sign Code of Academic Integrity statement at back of "blue" book.

Name:

Grade:

Q1	
Q2	
Q3	
Q4	
Total	

nce	z-transform		
1	All z		
$\frac{1}{1-z^{-1}}$	z > 1	Common DT	FT pairs:
$\frac{1}{1 - 1}$	z < 1	Sequence	DTFT
1-Z	$\Lambda 11$ z except 0 (if m>0)	$\delta[n]$	1
z^{-m}	or ∞ (if m<0)	u[n]	$\frac{1}{1-e^{-j\omega}} + \sum_{k=-\infty}^{\infty} \pi \delta\left(\omega + 2\pi k\right)$
$\frac{1}{1-az^{-1}}$	z > a	1	$\sum_{k=-\infty}^{\infty} 2\pi \delta \left(\omega + 2\pi k \right)$
$\frac{1}{1-az^{-1}}$	z < a	$e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty}2\pi\delta\left(\omega-\omega_{0}+2\pi k ight)$
$\frac{az^{-1}}{\left(1-az^{-1}\right)^2}$	z > a	$\alpha^n u[n], \alpha < 1$	<i>k</i> =-∞ 1
$\frac{az^{-1}}{\left(1-az^{-1}\right)^2}$	z < a	$\frac{\sin(\omega_c n)}{\pi n}$	$X(e^{j\omega}) = \begin{cases} 1, & \omega \le \omega_c \\ 0, & \omega_c < \omega < \pi \end{cases}$
	$ \frac{1}{1-z^{-1}} \\ \frac{1}{1-z^{-1}} \\ z^{-m} \\ \frac{1}{1-az^{-1}} \\ \frac{1}{1-az^{-1}} \\ \frac{az^{-1}}{(1-az^{-1})^2} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Common z-transform pairs:

Trigonometric Identity:

$$e^{jA} = \cos(A) + j\sin(A)$$

Geometric Series:

$$\sum_{n=0}^{N} r^n = \frac{1-r^{N+1}}{1-r}$$
$$\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}, |r| < 1$$

DTFT Equations:

$$\begin{split} X(e^{j\omega}) &= \sum_{k=-\infty}^{\infty} x[k] e^{-j\omega k} \\ x[n] &= \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega \end{split}$$

DFT Equations:

N-point DFT of $\{x[n], n = 0, 1, ..., N - 1\}$ is $X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi}{N}kn}$, for k = 0, 1, ..., N - 1N-point IDFT of $\{X[k], k = 0, 1, ..., N - 1\}$ is $x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k]e^{j\frac{2\pi}{N}kn}$, for n = 0, 1, ..., N - 1

Upsampling/Downsampling:

Upsampling by L (\uparrow L): $X_{up} = X(e^{j\omega L})$ Downsampling by M (\downarrow M): $X_{down} = \frac{1}{M} \sum_{i=0}^{M-1} X(e^{j(\frac{\omega}{M} - \frac{2\pi}{M}i)})$ 1. (30 pts) A continuous-time filter has a system function given by

$$H_a(s) = \frac{2}{(s+1)(s+3)}$$

A discrete-time filter is designed using impulse invariance with an impulse response given as samples of the impulse response of the continuous-time filter: $h[n] = Th_a(nT)$, where T is the sampling period. The frequency response of the discrete-time filter is given as:

$$H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} H_a\left(j\left(\frac{\omega}{T} - \frac{2\pi k}{T}\right)\right)$$

(a) Find the impulse response, h[n], and system function, H(z), of the discrete-time filter. Reminder: $\mathcal{L}\{e^{at}\} = \frac{1}{s+a}$

(b) What are the poles of the discrete-time filter?

(c) Is the discrete-time filter stable and causal?

(d) How should the sampling period, T, be chosen such that $|H(e^{j\pi})| \leq 0.1$? HINT: Think about writing $H(e^{j\omega})$ as a function of $H_a(s)$ for $\omega = \pi$.

Page Left Intentionally Blank

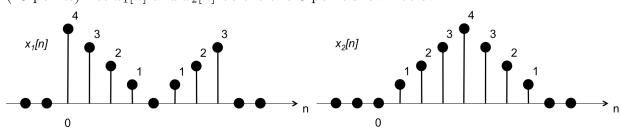
2. (25 points) Let H(z) be the system function for a stable LTI system and given as:

$$H(z) = \frac{(1 - 9z^{-2})(1 + \frac{1}{3}z^{-1})}{1 - \frac{1}{3}z^{-1}}$$

(a) H(z) can be represented as a cascade of a minimum-phase system $H_{min}(z)$ and a unity-gain all-pass system $H_{ap}(z)$. Determine $H_{min}(z)$ and $H_{ap}(z)$ such that $|H_{ap}(z)| = 1$ for any z on the unit circle.

(b) Write an expression for the phase of $H_{min}(e^{j\omega})$. Is the minimum-phase system, $H_{min}(z)$, a generalized linear-phase system?

(c) If the minimum-phase system, $H_{min}(z)$, is not a generalized linear-phase system, can H(z) be represented as a cascade of a generalized linear-phase system $H_{lin}(z)$ and an all-pass system $H_{ap2}(z)$? If your answer is yes, determine $H_{lin}(z)$ and $H_{ap2}(z)$. If your answer is no, explain why such representation does not exist.



(a) Let $X_1[k]$ and $X_2[k]$ be 8-point DFTs of $x_1[n]$ and $x_2[n]$ respectively. Write an expression for $X_2[k]$ in terms of $X_1[k]$. Hint: Think about how to write $x_2[n]$ in terms of $x_1[n]$.

3. (25 points) Let $x_1[n]$ and $x_2[n]$ be the two 8-point shown below:

(b) Find the sequence h[n] which satisfies the relation $x_2[n] = x_1[n] \otimes h[n]$ where \otimes denotes the 8-point circular convolution. 4. (20 points) Let x[n] be a signal of length N, n = 0, 1, ..., N - 1. Let y[n] be the 2N point signal created by repeating x[n]:

$$y[n] = \begin{cases} x[n] & \text{for } n = 0, 1, ..., N - 1, \\ x[n - N] & \text{for } n = N, ..., 2N - 1 \end{cases}$$

(a) Find a simple expression for the 2N-point DFT of y[n] in terms of the DFT of x[n]. Specify the length of the DFT of x[n] in your expression.

(b) Approximate the minimum number of multiplications needed to calculate the 2^{8} -point DFT of y[n]. Describe the computations done to obtain the DFT. (I.e What DFT did you perform?)