ESE 531 Digital Signal Processing

December 11, 2015	Final Exam	Closed Book/Notes	2 Hours
See information on p.3.	Give the derivations	s and/or reasoning leading to	<u>your answers</u> .

Problem 1

An LTI system has *real* unit-sample response $h_A[n] = \begin{cases} a^n, & n = 0, 1, ..., L-1 \\ 0, & otherwise \end{cases}$, a > 1

- (a) LTI System B has system function H_B(z) = H_A(z)H_A(z⁻¹).
 Sketch its unit-sample response h_B for L=4. (Exact values not required for sketch).
 Does System B have linear phase? If so, what is its phase response?
- (b) LTI System C is defined by H_C(z) = H_A(-z) H_A(-z⁻¹)
 Find its *unit-sample response* h_C in terms of a, for L=4.
 Determine if System C is (for arbitrary L) a generalized linear phase system.

Problem 2

A real, causal, length-7, generalized linear phase FIR filter is known to have a zero at $z = j\sqrt{2}$, and its frequency response $H(e^{j\omega})$ has value 9 at $\omega = 0$ and at $\omega = \pi$. The filter is of one of the four types (Type I, II, III, or IV).

Can you find the unit-sample response $h = \{h[0], h[1], ..., h[6]\}$ of the filter?

(Either *find* h *explicitly*, or *explain* why it is not possible to find it using only the given information.)

Problem 3

A long *periodic* sequence x of period $N = 2^r$ (r is an integer) is to be convolved with a finite-length sequence h of length K.

- (a) Show that the output y of this convolution (filtering) is periodic; what is its period?
- (b) Let K = mN where m is an integer; N is large. How would you implement this convolution *efficiently*? Explain your analysis clearly.Compare the *total number of multiplications* required in your scheme to that in the direct implementation of FIR filtering. (Consider the case r = 10, m = 10).

Problem 4

A sequence $x = \{x[n], n = 0, 1, ..., N - 1\}$ is given; let $X(e^{j\omega})$ be its DTFT.

- (a) Suppose N = 10. You want to evaluate both $X(e^{j2\pi7/12})$ and $X(e^{j2\pi3/8})$. The only computation you can perform is one DFT, on any one input sequence of your choice. Can you find the desired DTFT values? (*Show your analysis and explain clearly.*)
- (b) Suppose N is large. You want to obtain $X(e^{j\omega})$ at the following 2M frequencies: $\omega = \frac{2\pi}{M}m, m = 0, 1, ..., M - 1$ and $\omega = \frac{2\pi}{M}m + \frac{2\pi}{N}, m = 0, 1, ..., M - 1.$

Here $M = 2^{\mu} \ll N = 2^{\nu}$

A standard radix-2 FFT algorithm is available. You may execute the FFT algorithm *once* or *more than once*, and *multiplications* and *additions* outside of the FFT are *allowed*, if necessary.

You want to get the 2M DTFT values with as few *total multiplications* as possible (*including those in the FFT*). Give explicitly the best method you can find for this, with an estimate of the *total number of multiplications* needed in terms of M and N.

Does your result change if extra multiplications outside of FFTs are not allowed?

Common DTFT pairs:

Sequence	DTFT	
$\delta[n]$	1	
u[n]	$\frac{1}{1-e^{-j\omega}} + \sum_{k=-\infty}^{\infty} \pi \delta\left(\omega + 2\pi k\right)$	
1	$\sum_{k=-\infty}^{\infty} 2\pi \delta \left(\omega + 2\pi k \right)$	
$e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi \delta \big(\omega - \omega_0 + 2\pi k\big)$	
$\alpha^n u[n], \alpha < 1$	$\frac{1}{1 - \alpha e^{-j\omega}}$	

Definition of the DFT:

DFT of
$$\{x[n], n = 0, 1, ..., N - 1\}$$
 is $X[k] = \sum_{n=0}^{N-1} x[n]e^{-j2\pi k n/N}$, $k = 0, 1, ..., N - 1$
• *N*-point FFT requires approximately $\frac{N}{2}\log_2 N$ multiplications.

Common z-transform pairs:

Sequence	z-transform	ROC	
$\delta[n]$	1	All z	
$a^n u[n]$	$\frac{1}{1-az^{-1}}$	z > a	
$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a	

Trigonometric Identities:

$$\sin(A-B) = \sin(A)\cos(B) - \cos(A)\sin(B)$$
$$\cos(A-B) = \cos(A)\cos(B) + \sin(A)\sin(B)$$
$$\cos(A) + \cos(B) = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$$
$$\cos(A) = \frac{e^{jA} + e^{-jA}}{2}$$
Geometric Series:
$$\sum_{n=0}^{N} r^n = \frac{1-r^{N+1}}{1-r}$$