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Dec. 11, 2015  ESE 531 Final Exam Solution 
   

Problem 1 
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• Therefore it is a linear phase system, with zero phase. 
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The phase response of System C is therefore generalized linear phase.  This follows also 
from the symmetry of Ch   
  

2 4 61 a a a+ + +

3a

Bh

 Ah

Ah



 2 

Problem 2 
 
The FIR filter must have 6 zeros  (and 6 poles at the origin).  For a real filter, if 0 2z j=  
is a zero then 0 2z j∗ = −  is also a zero; in addition for gen. linear phase FIR filter, 

1 1
0 0  and ( )

2 2
j jz z− ∗ −−

= =  are also zeros. 

The other two zeros must be either (i) a real reciprocal pair, or must be (ii) a complex 
conjugate reciprocal pair on the unit circle.  In any case, in general the two other zeros 

5 6 5 and 1/z z z=  must be a reciprocal pair. 
Therefore the overall system function must be of the form 

5 56

2 2
5 56

( ) ( 2)( 2)( / 2)( / 2)( )( 1 / )

( 2)( 1 / 2)( )( 1 / )

KH z z j z j z j z j z z z z
z
K z z z z z z
z

= − + + − − −

= + + − −
 

The frequency response at 0ω =   (i.e. at z=1) is 
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At ω π=  we have 
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 From these two conditions, we get  2 2
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2 2{ [0], [1],..., [6]} {1,0, ,0, ,0,1}h h h h= =   (Type I filter) 
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Problem 3 

(a) 
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(b)  K mN=  
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 to 

compute the output block of N samples; the rest of the output is just this block repeated.   
 

• For the given numbers, this is a total of 1536 10 1024 16384 multiplications× + =  
  

• Regular convolution requires mN multiplies for each output point, so for a total of 
N output points we need 2mN  multiplies.   

• Even regular circular convolution (not using FFT) requires a total of  2N  
multiplies which is  > 106  here. 
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Problem 4 
(a) 

2 7/12 2 14/24 2 3/8 2 9/24,   and  
We can compute the DTFT values on 24 equi-spaced points around unit circle, by computing the 
DFT of a sequence of length 24.  Therefore in this case we can ap
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(b)  We are now computing the DTFT on (i) M uniformly spaced locations on the full 
unit circle (starting at 0ω = ), and also at (ii) a set of M locations offset from these by a 
small angle 2 / Nπ  
 

-- The first set of M  DTFT values can be obtained by taking the M-point DFT of an M-
point sequence 1x derived from x  as follows: 
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            No multiplications are needed in forming this finite sequence from x . 
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Thus with 
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[ ] [ ] ,   0,1,..., 1
j n

Ny n x n e n N
π−

= − , we are now looking for the DTFT of y  at 
M uniformly spaced locations on the full unit circle (starting at 0ω = ).  This can again be 
found by taking the M-point DFT of an M-point sequence 1y  derived from y  as follows: 
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            No multiplications are needed in forming this finite sequence from y . 
 
Therefore we need a total of 2  M-point FFT’s, and N multiplications (to obtain sequence 
y from x).  The total number of multiplications is then approximately 

2 22 log log
2
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Using a single FFT on the original sequence x, since  is divisible by N M , we would need 

an N-point FFT with total number of multiplications 2log
2
N N .  This can be substantially 

larger than the result above;  e.g. for N=214=16,384  and M=28=256,  we need 
approximately 18,416  vs. 114,688  
 


