ESE 531: Digital Signal Processing

Lec 11: February 16th, 2017

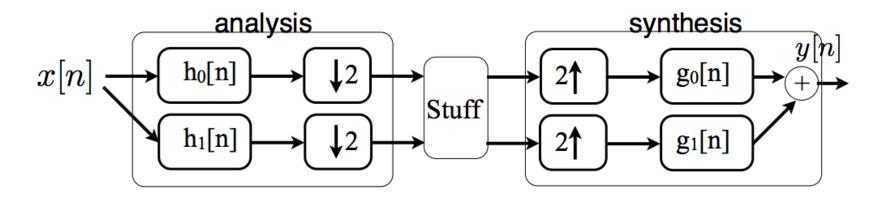
Data Converters, Noise Shaping

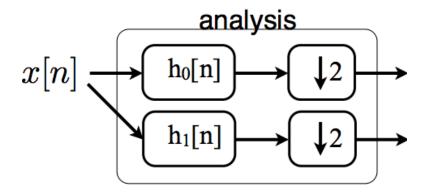
Lecture Outline

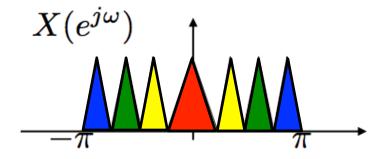
- Multi-Rate Filter Banks (con't)
- Data Converters
 - Anti-aliasing
 - ADC
 - Quantization
 - Practical DAC
- Noise Shaping

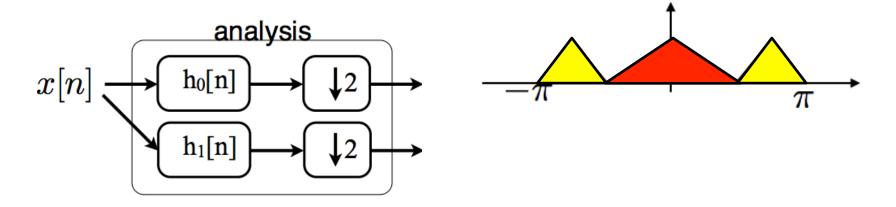
- Use filter banks to operate on a signal differently in different frequency bands
 - To save computation, reduce the rate after filtering

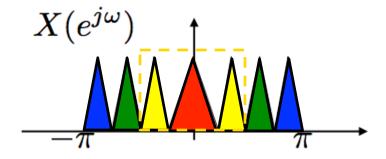
- Use filter banks to operate on a signal differently in different frequency bands
 - To save computation, reduce the rate after filtering
- \bullet h₀[n] is low-pass, h₁[n] is high-pass
 - Often $h_1[n] = e^{j\pi n} h_0[n]$ \leftarrow shift freq resp by π

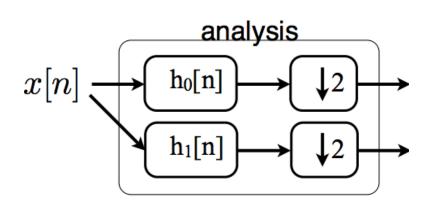


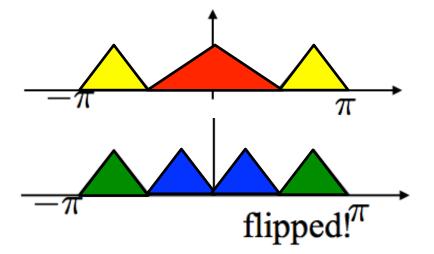


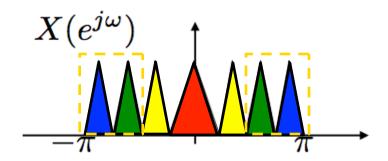


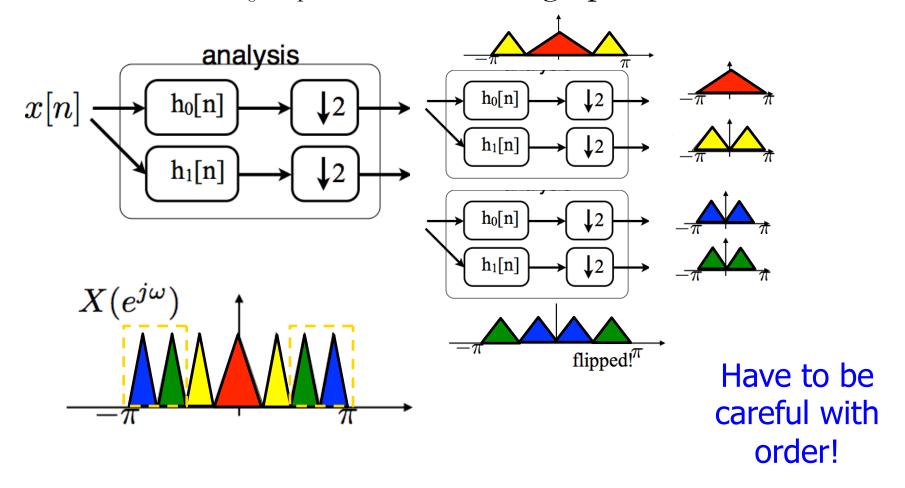


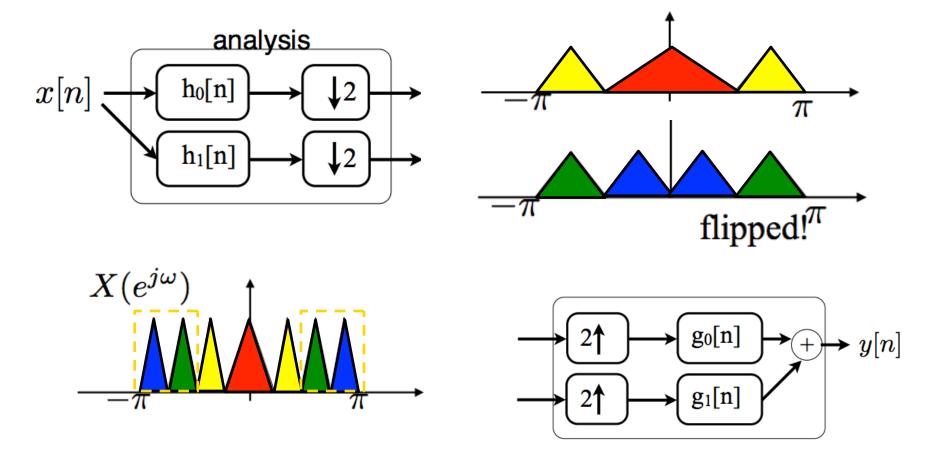






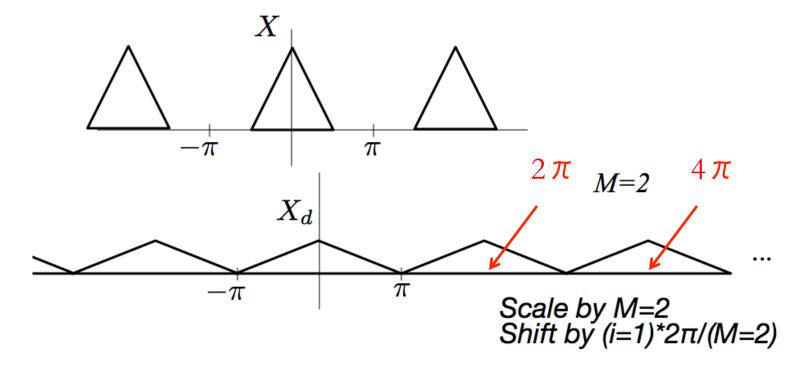


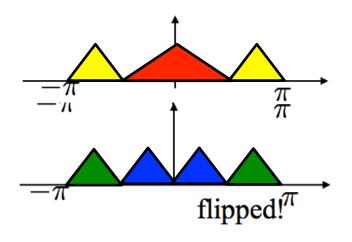


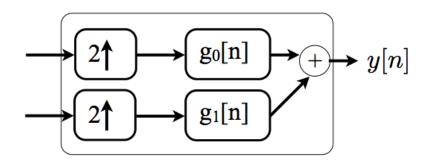


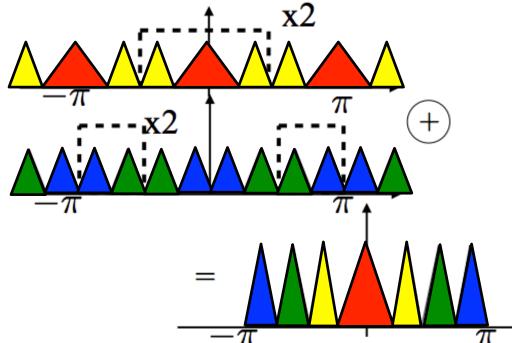
Downsampling Reminder: Example

$$X_d(e^{j\omega}) = \frac{1}{M} \sum_{i=0}^{M-1} X\left(e^{j(\frac{w}{M} - \frac{2\pi}{M}i)}\right)$$

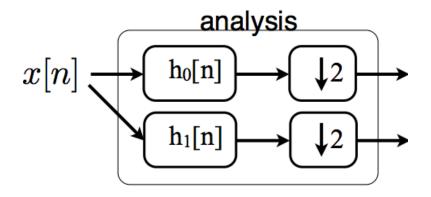


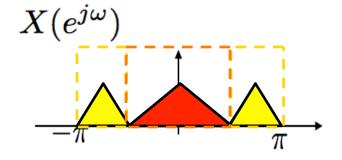


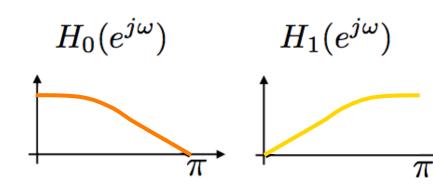




 \Box h₀, h₁ are NOT ideal low/high pass

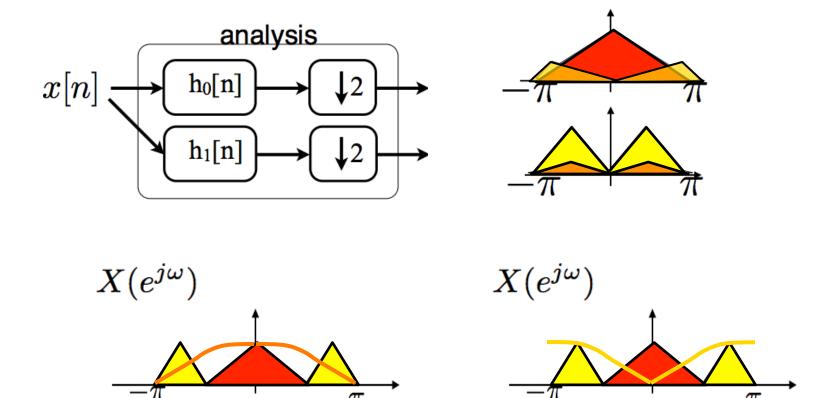




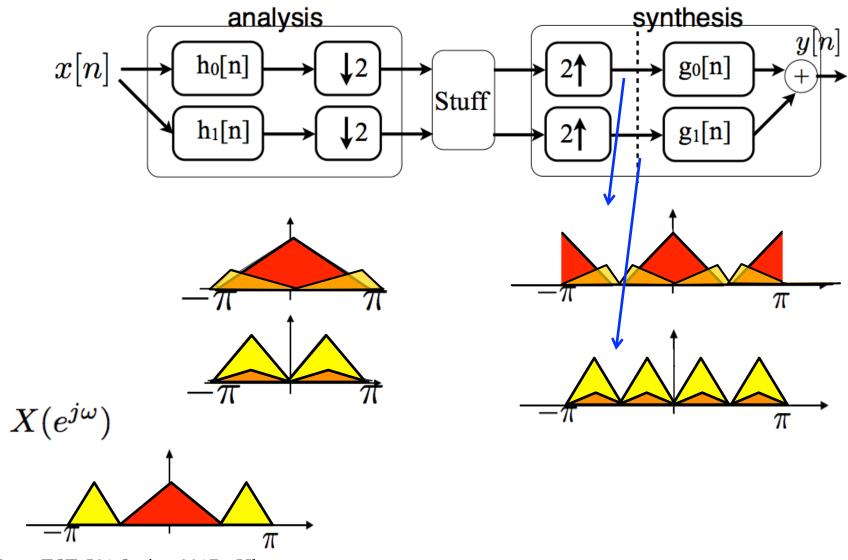


Non Ideal Filters

□ h₀, h₁ are NOT ideal low/high pass

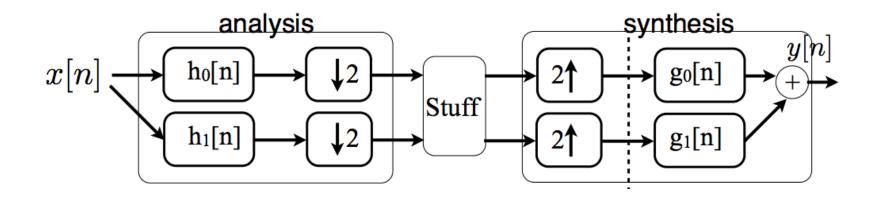


Non Ideal Filters



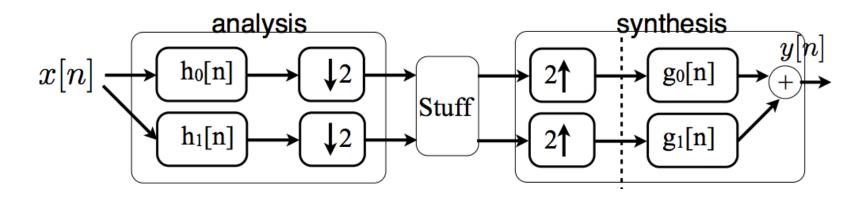
Penn ESE 531 Spring 2017 - Khanna

Perfect Reconstruction non-Ideal Filters



$$Y(e^{j\omega}) = \frac{1}{2} \left[G_0(e^{j\omega}) H_0(e^{j\omega}) + G_1(e^{j\omega}) H_1(e^{j\omega}) \right] X(e^{j\omega}) \\ + \frac{1}{2} \left[G_0(e^{j\omega}) H_0(e^{j(\omega-\pi)}) + G_1(e^{j\omega}) H_1(e^{j(\omega-\pi)}) \right] X(e^{j(\omega-\pi)}) \\ \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Quadrature Mirror Filters



Quadrature mirror filters

$$H_1(e^{j\omega}) = H_0(e^{j(\omega-\pi)})$$

 $G_0(e^{j\omega}) = 2H_0(e^{j\omega})$
 $G_1(e^{j\omega}) = -2H_1(e^{j\omega})$

Perfect Reconstruction non-Ideal Filters

$$Y(e^{j\omega}) = \frac{1}{2} \left[G_0(e^{j\omega}) H_0(e^{j\omega}) + G_1(e^{j\omega}) H_1(e^{j\omega}) \right] X(e^{j\omega}) \\ + \frac{1}{2} \left[G_0(e^{j\omega}) H_0(e^{j(\omega-\pi)}) + G_1(e^{j\omega}) H_1(e^{j(\omega-\pi)}) \right] X(e^{j(\omega-\pi)}) \\ \uparrow \qquad \qquad \downarrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad$$

$$H_1(e^{j\omega}) = H_0(e^{j(\omega-\pi)})$$

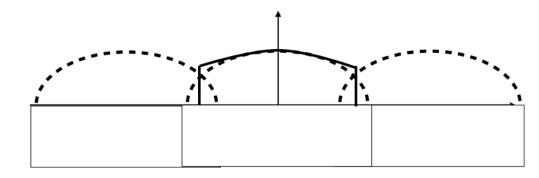
$$G_0(e^{j\omega}) = 2H_0(e^{j\omega})$$

$$G_1(e^{j\omega}) = -2H_1(e^{j\omega})$$

ADC

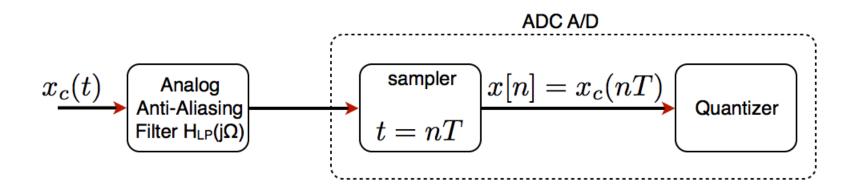
Aliasing

□ If $\Omega_N > \Omega_s/2$, $x_r(t)$ an aliased version of $x_c(t)$

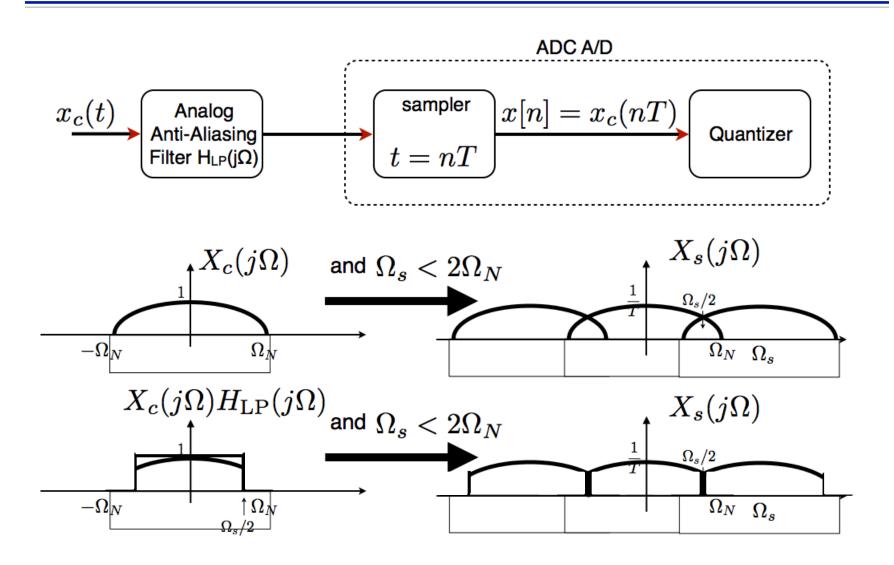


$$X_r(j\Omega) = \begin{cases} TX_s(j\Omega) & \text{if } |\Omega| \le \Omega_s/2\\ 0 & \text{otherwise} \end{cases}$$

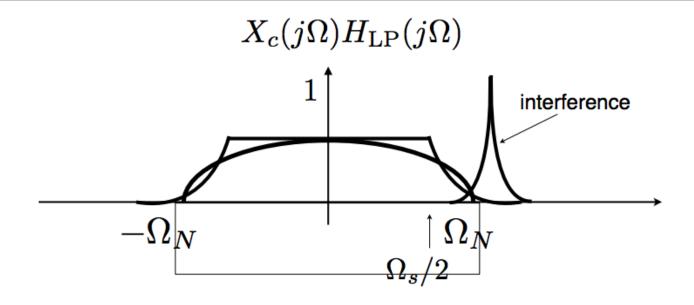
Anti-Aliasing Filter with ADC

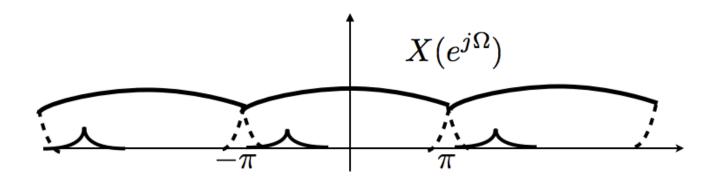


Anti-Aliasing Filter with ADC

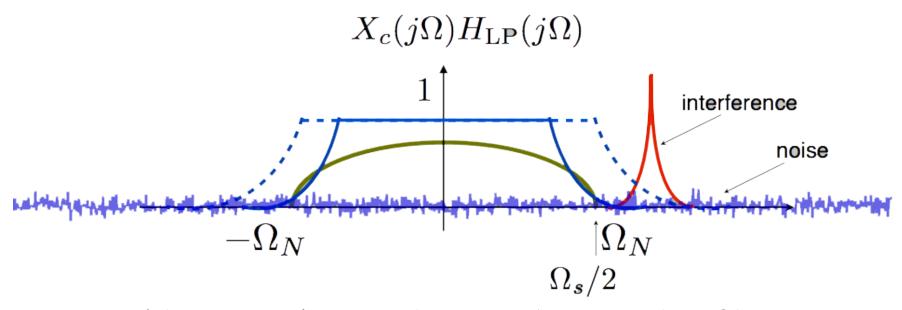


Non-Ideal Anti-Aliasing Filter

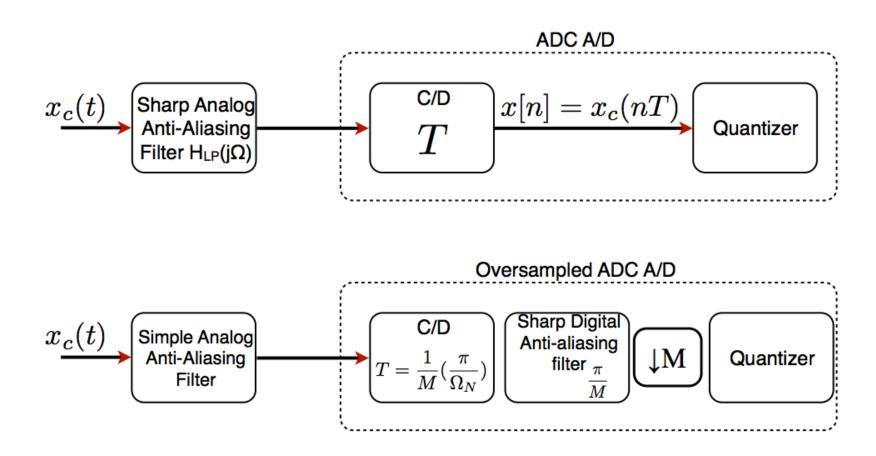


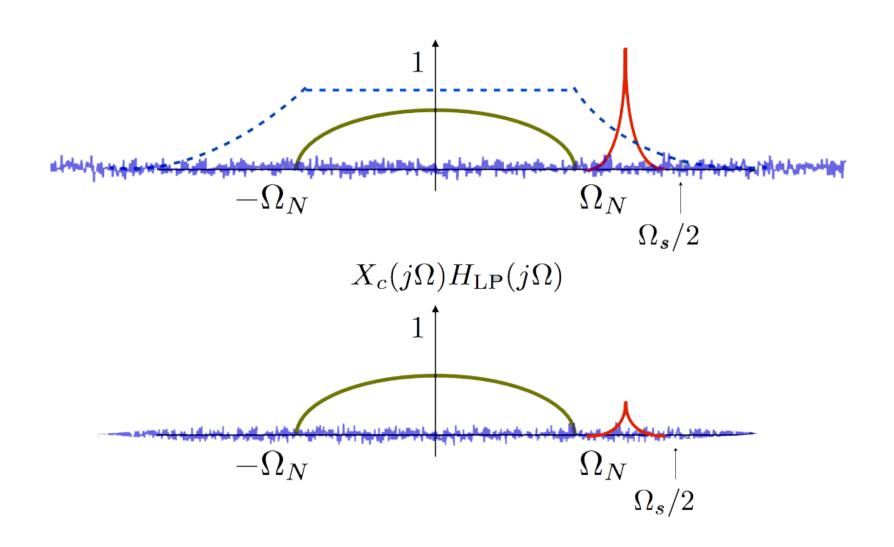


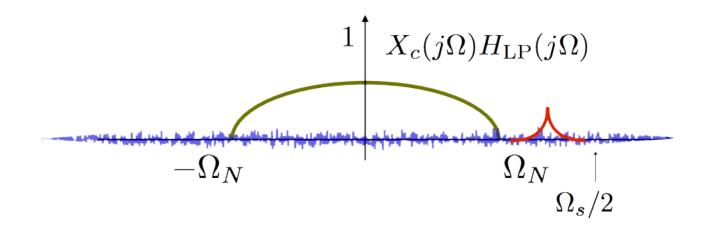
Non-Ideal Anti-Aliasing Filter

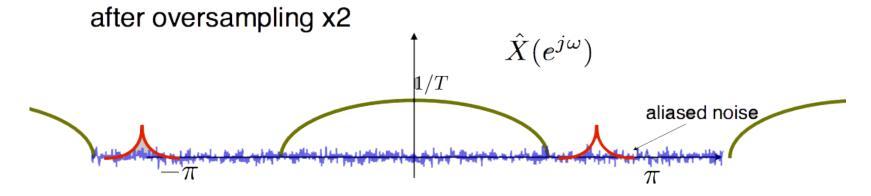


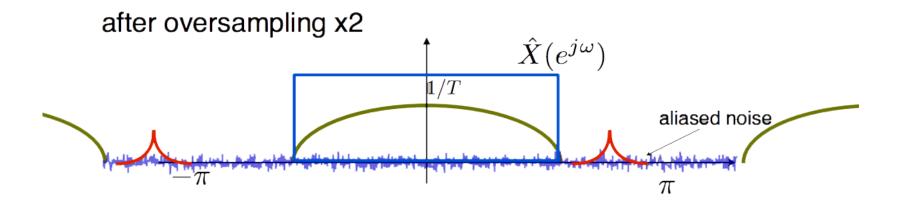
- Problem: Hard to implement sharp analog filter
- Solution: Crop part of the signal and suffer from noise and interference

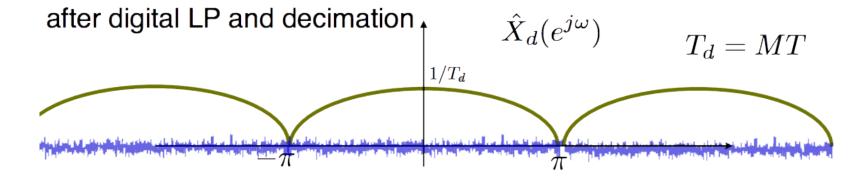




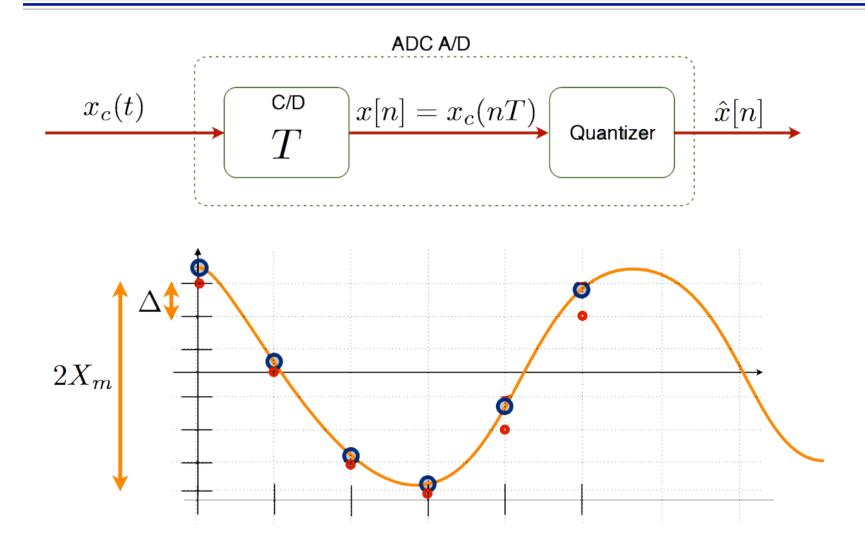








Sampling and Quantization

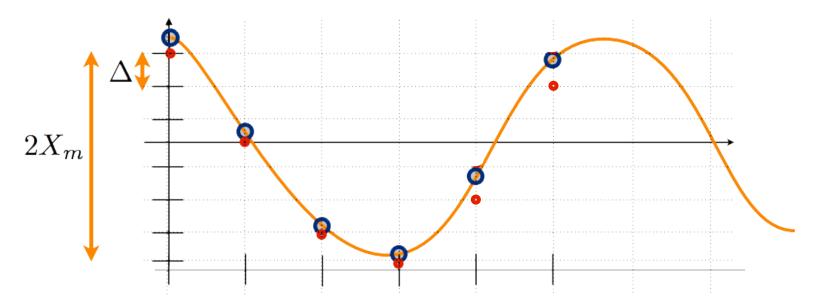


Sampling and Quantization

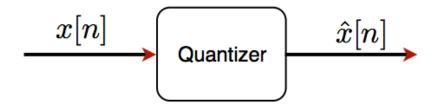
for 2's complement with B+1 bits $-1 \le \hat{x}_B[n] < 1$

$$\Delta = \frac{2X_m}{2^{B+1}} = \frac{X_m}{2^B}$$

$$\hat{x}[n] = X_m \hat{x}_B[n]$$



Quantization Error



Model quantization error as noise

$$\begin{array}{c|c} \hline x[n] \\ \hline & \hat{x}[n] = x[n] + e[n] \\ \hline & e[n] \\ \hline \end{array}$$

□ In that case:

$$-\Delta/2 \le e[n] < \Delta/2$$

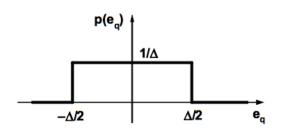
$$(-X_m - \Delta/2) < x[n] \le (X_m - \Delta/2)$$

Effect of Quantization Error on Signal

- Quantization error is a deterministic function of the signal
 - Consequently, the effect of quantization strongly depends on the signal itself
- Unless, we consider fairly trivial signals, a deterministic analysis is usually impractical
 - More common to look at errors from a statistical perspective
 - "Quantization noise"
- □ Two aspects
 - How much noise power (variance) does quantization add to our samples?
 - How is this noise distributed in frequency?

Quantization Error Statistics

- ullet Crude assumption: $e_q(x)$ has uniform probability density
- □ This approximation holds reasonably well in practice when
 - Signal spans large number of quantization steps
 - Signal is "sufficiently active"
 - Quantizer does not overload

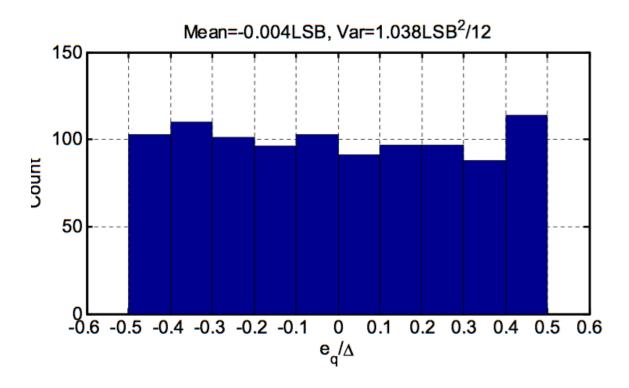


Mean

$$\bar{e} = \int_{-\Delta/2}^{+\Delta/2} \frac{e}{\Delta} de = 0$$

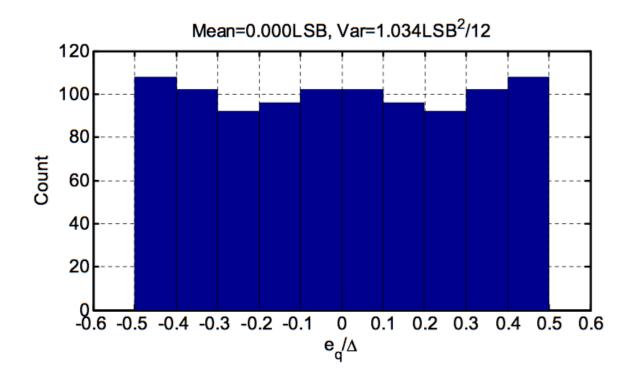
Variance
$$\overline{e^2} = \int_{-\Delta/2}^{+\Delta/2} \frac{e^2}{\Delta} de = \frac{\Delta^2}{12}$$

Reality Check



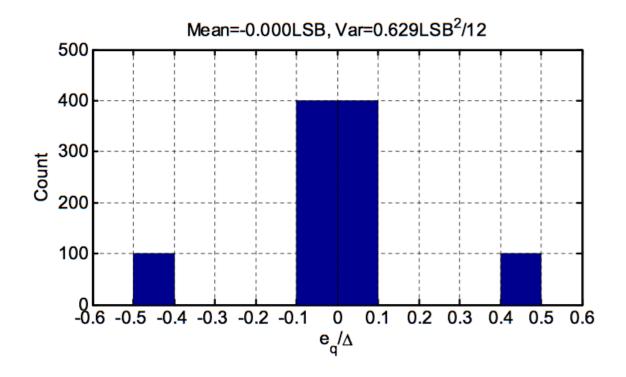
- □ Shown below is a histogram of e_q in an 8-bit quantizer
 - Input sequence consists of 1000 samples with Gaussian distribution, $4\sigma = FSR$

Reality Check



Same as before, but now using a sinusoidal input signal with f_{sig}/f_s =101/1000

Reality Check



- Same as before, but now using a sinusoidal input signal with f_{sig}/f_s =100/1000
- □ What went wrong?

Analysis

$$\mathbf{v}_{\text{sig}}(n) = \cos\left(2\pi \cdot \frac{f_{\text{sig}}}{f_{\text{S}}} \cdot n\right)$$

Signal repeats every m samples, where m is the smallest integer that satisfies $m \cdot \frac{f_{sig}}{f_S} = \text{integer}$

$$m \cdot \frac{101}{1000} = \text{integer} \Rightarrow \text{m} = 1000$$

$$m \cdot \frac{100}{1000} = \text{integer} \Rightarrow \text{m} = 10$$

This means that in the last case $e_q(n)$ consists at best of 10 different values, even though we took 1000 samples

Noise Model for Quantization Error

Assumptions:

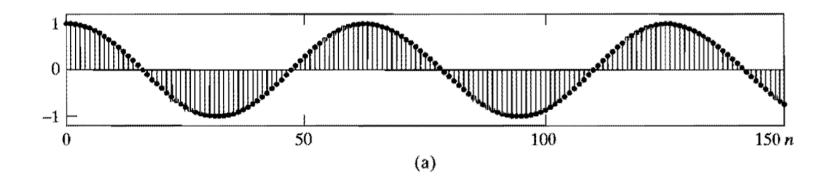
- Model e[n] as a sample sequence of a stationary random process
- e[n] is not correlated with x[n]
- e[n] not correlated with e[m] where $m \neq n$ (white noise)
- $e[n] \sim U[-\Delta/2, \Delta/2]$ (uniform pdf)
- □ Result:

$$ext{Variance is:} \quad \sigma_e^2 = rac{\Delta^2}{12} \text{ , or } \sigma_e^2 = rac{2^{-2B}X_m^2}{12} ext{ since } \Delta = 2^{-B}X_m$$

 $lue{}$ Assumptions work well for signals that change rapidly, are not clipped, and for small Δ

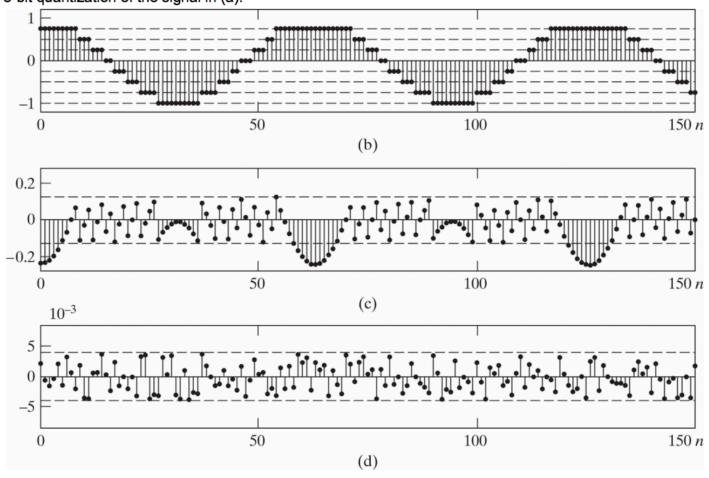
Quantization Noise

Figure 4.57 Example of quantization noise. (a) Unquantized samples of the signal $x[n] = 0.99\cos(n/10)$.



Quantization Noise

Figure 4.57 (continued) (b) Quantized samples of the cosine waveform in part (a) with a 3-bit quantizer. (c) Quantization error sequence for 3-bit quantization of the signal in (a). (d) Quantization error sequence for 8-bit quantization of the signal in (a).



Signal-to-Quantization-Noise Ratio

□ For uniform B+1 bits quantizer

$$SNR_Q = 10 \log_{10} \left(\frac{\sigma_x^2}{\sigma_e^2} \right)$$
$$= 10 \log_{10} \left(\frac{12 \cdot 2^{2B} \sigma_x^2}{X_m^2} \right)$$

$$\mathrm{SNR}_Q = 6.02B + 10.8 - 20\log_{10}\left(rac{X_m}{\sigma_x}
ight)^{ ext{Quantizer range}}$$
rms of amp

Signal-to-Quantization-Noise Ratio

$$\mathrm{SNR}_Q = 6.02B + 10.8 - 20\log_{10}\left(\frac{X_m}{\sigma_x}\right)^{\text{Quantizer range}}_{\text{rms of amp}}$$

- □ Improvement of 6dB with every bit
- □ The range of the quantization must be adapted to the rms amplitude of the signal
 - Tradeoff between clipping and noise!
 - Often use pre-amp
 - Sometimes use analog auto gain controller (AGC)

Signal-to-Quantization-Noise Ratio

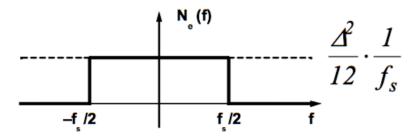
Assuming full-scale sinusoidal input, we have

SQNR =
$$\frac{P_{sig}}{P_{qnoise}} = \frac{\frac{1}{2} \left(\frac{2^{B} \Delta}{2}\right)^{2}}{\frac{\Delta^{2}}{12}} = 1.5 \times 2^{2B} = 6.02B + 1.76 \text{ dB}$$

B (Number of Bits)	SQNR
8	50dB
12	74dB
16	98dB
20	122dB

Quantization Noise Spectrum

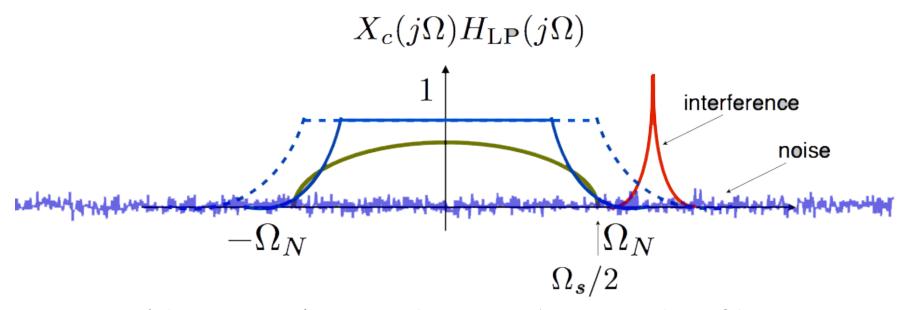
☐ If the quantization error is "sufficiently random", it also follows that the noise power is uniformly distributed in frequency



References

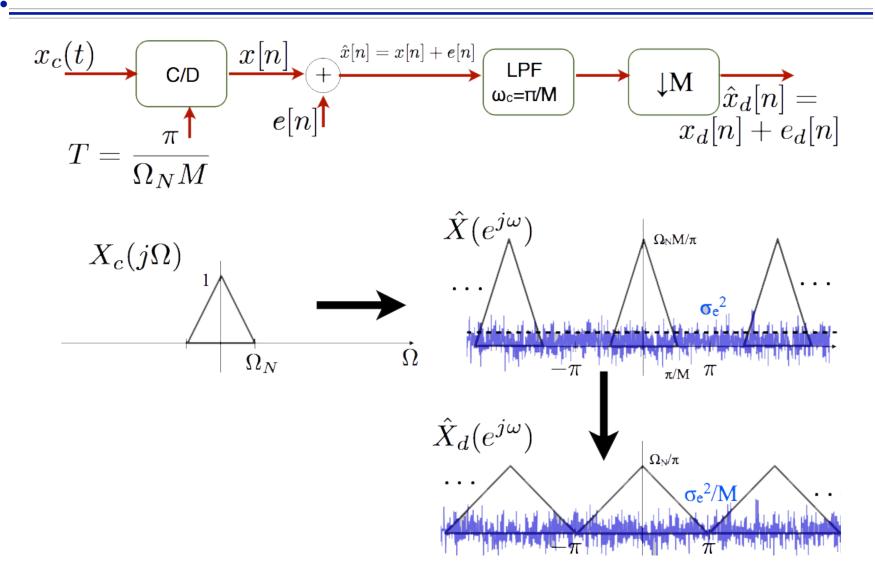
- W. R. Bennett, "Spectra of quantized signals," Bell Syst. Tech. J., pp. 446-72, July 1988.
- B. Widrow, "A study of rough amplitude quantization by means of Nyquist sampling theory," IRE Trans. Circuit Theory, vol. CT-3, pp. 266-76, 1956.

Non-Ideal Anti-Aliasing Filter



- Problem: Hard to implement sharp analog filter
- Solution: Crop part of the signal and suffer from noise and interference

Quantization Noise with Oversampling



Quantization Noise with Oversampling

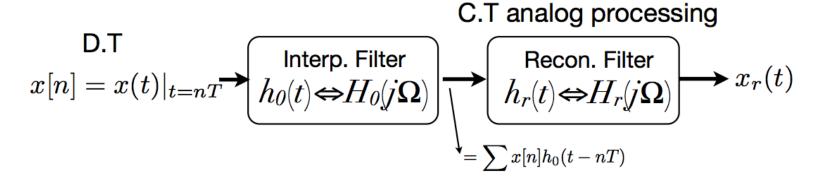
- \blacksquare Energy of $x_d[n]$ equals energy of x[n]
 - No filtering of signal!
- Noise variance is reduced by factor of M

$$SNR_Q = 6.02B + 10.8 - 20 \log_{10} \left(\frac{X_m}{\sigma_x} \right) + 10 \log_{10} M$$

- □ For doubling of M we get 3dB improvement, which is the same as 1/2 a bit of accuracy
 - With oversampling of 16 with 8bit ADC we get the same quantization noise as 10bit ADC!

D.T
$$x[n] = x(t)|_{t=nT} \longrightarrow \text{sinc pulse generator} x_r(t) = \sum_{n=-\infty}^{\infty} x[n] \text{sinc}\left(\frac{t-nT}{T}\right)$$

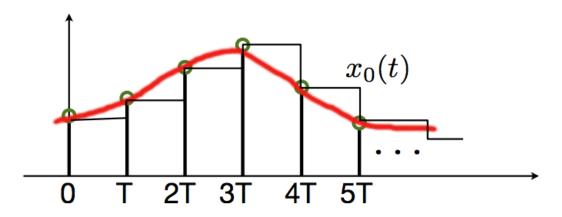
- Scaled train of sinc pulses
- □ Difficult to generate sinc → Too long!



- \Box h₀(t) is finite length pulse \rightarrow easy to implement
- □ For example: zero-order hold

$$H_0(j\Omega) = Te^{-j\Omega \frac{T}{2}} \operatorname{sinc}(\frac{\Omega}{\Omega_s})$$

Zero-Order-Hold interpolation

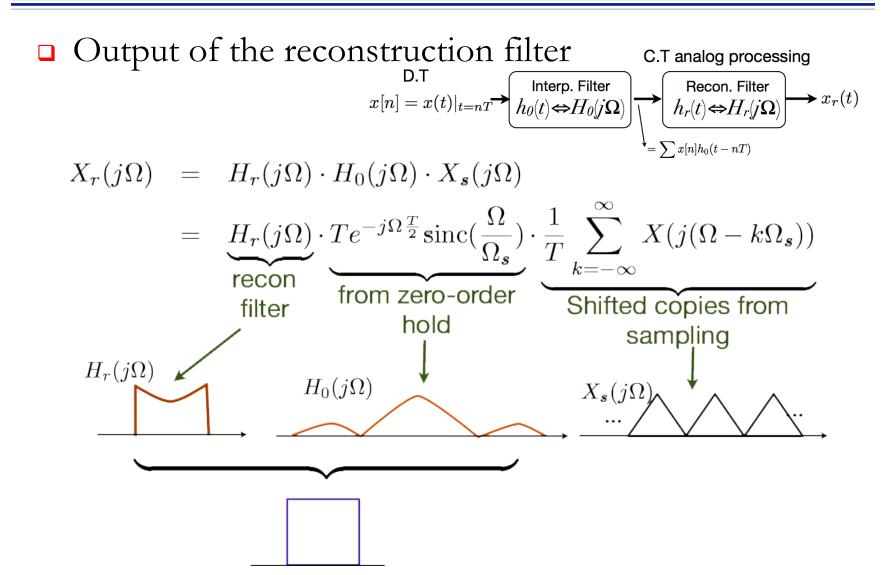


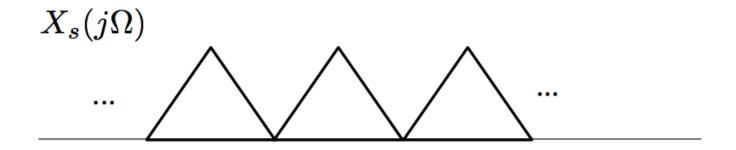
$$x_0(t) = \sum_{n=-\infty}^{\infty} x[n]h_0(t-nT) = h_0(t) * x_s(t)$$

Taking a FT:

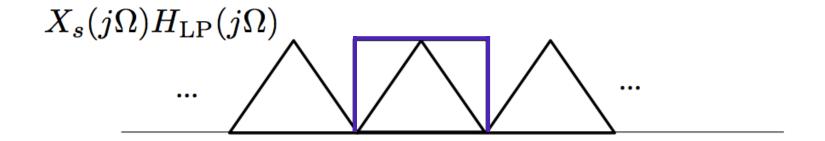
$$X_{(j\Omega)} = H_0(j\Omega)X_s(j\Omega)$$

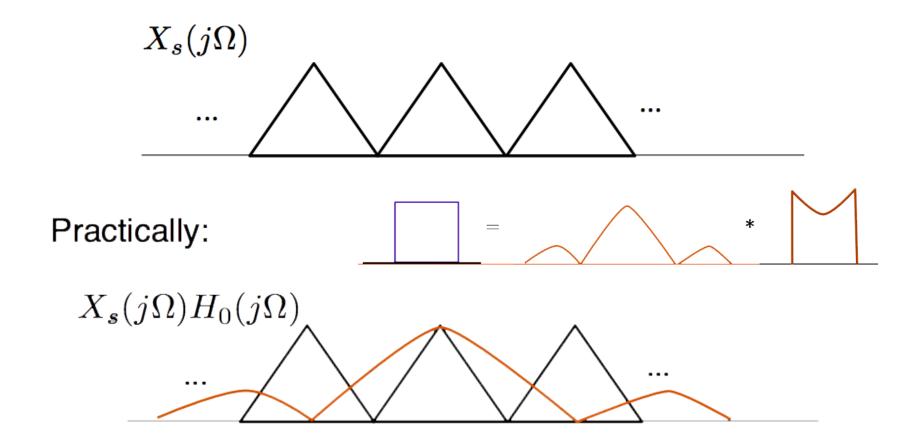
= $H_0(j\Omega)\frac{1}{T}\sum_{k=-\infty}^{\infty}X(j(\Omega-k\Omega_s))$

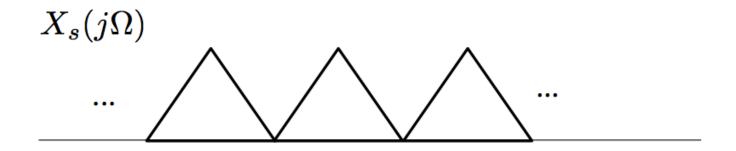




Ideally:

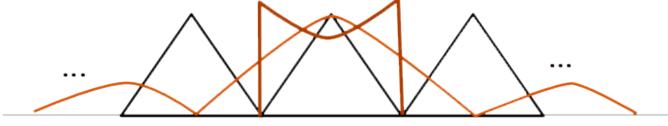




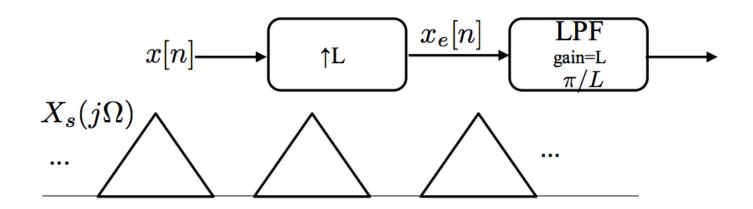


Practically:

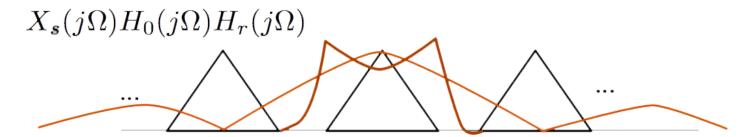
$$X_s(j\Omega)H_0(j\Omega)H_r(j\Omega)$$



Practical DAC with Upsampling

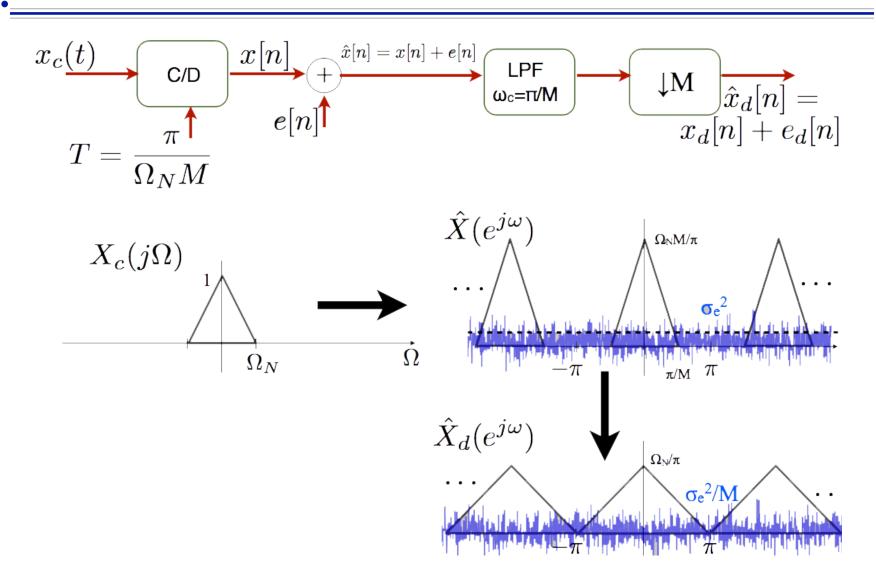


Practically:



Noise Shaping

Quantization Noise with Oversampling



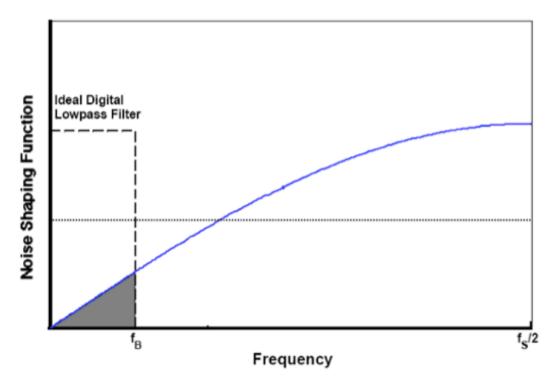
Quantization Noise with Oversampling

- \blacksquare Energy of $x_d[n]$ equals energy of x[n]
 - No filtering of signal!
- Noise variance is reduced by factor of M

$$SNR_Q = 6.02B + 10.8 - 20 \log_{10} \left(\frac{X_m}{\sigma_x}\right) + 10 \log_{10} M$$

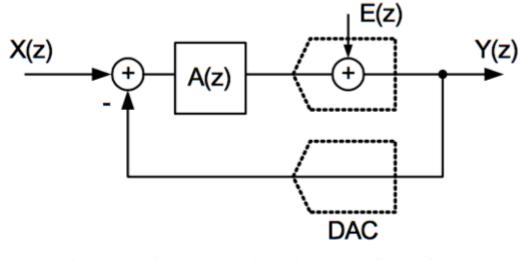
- □ For doubling of M we get 3dB improvement, which is the same as 1/2 a bit of accuracy
 - With oversampling of 16 with 8bit ADC we get the same quantization noise as 10bit ADC!

Noise Shaping



- □ Idea: "Somehow" build an ADC that has most of its quantization noise at high frequencies
- □ Key: Feedback

Noise Shaping Using Feedback



$$Y(z) = E(z) + A(z)X(z) - A(z)Y(z)$$

$$= E(z)\frac{1}{1+A(z)} + X(z)\frac{A(z)}{1+A(z)}$$

$$= E(z)\underbrace{H_E(z)}_{Noise} + X(z)\underbrace{H_X(z)}_{Signal}$$

$$= \underbrace{Function}_{Transfer}$$

$$= \underbrace{Function}_{Function}$$

Noise Shaping Using Feedback

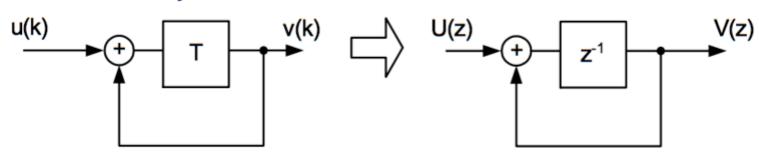
$$Y(z) = E(z) \underbrace{\frac{1}{1 + A(z)}}_{Noise} + X(z) \underbrace{\frac{A(z)}{1 + A(z)}}_{Signal}$$

$$\underbrace{\frac{Noise}{Transfer}}_{Function}$$
Function

- Objective
 - Want to make STF unity in the signal frequency band
 - Want to make NTF "small" in the signal frequency band
- □ If the frequency band of interest is around DC $(0...f_B)$ we achieve this by making |A(z)| >> 1 at low frequencies
 - Means that NTF << 1
 - Means that STF ≅ 1

Discrete Time Integrator

Delay Element



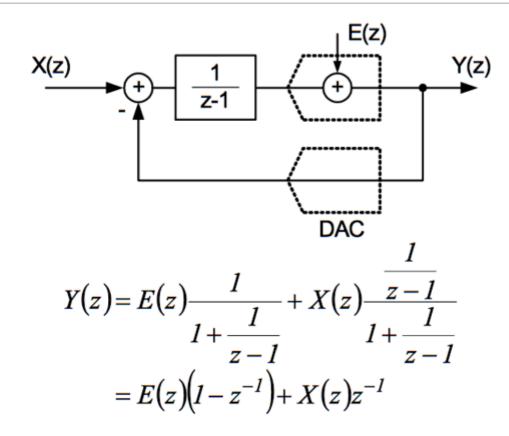
$$v(k) = u(k-1) + v(k-1)$$

$$V(z) = z^{-1}U(z) + z^{-1}V(z)$$

$$\frac{V(z)}{U(z)} = \frac{z^{-1}}{1 - z^{-1}} = \frac{1}{z - 1} \qquad z = e^{j\omega T}$$

□ "Infinite gain" at DC (ω =0, z=1)

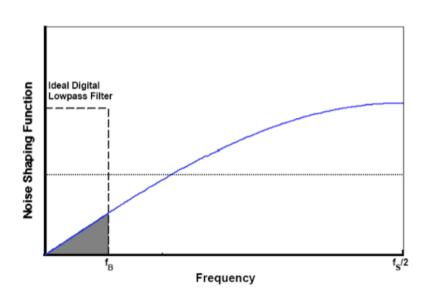
First Order Sigma-Delta Modulator



 Output is equal to delayed input plus filtered quantization noise

NTF Frequency Domain Analysis

$$\begin{split} H_{e}(z) &= 1 - z^{-1} \\ H_{e}(j\omega) &= \left(1 - e^{-j\omega T}\right) = 2e^{-j\omega T/2} \left(\frac{e^{j\omega T/2} - e^{-j\omega T/2}}{2}\right) \\ &= 2e^{-j\frac{\omega T}{2}} \left(j\sin\left(\frac{\omega T}{2}\right)\right) = 2\sin\left(\frac{\omega T}{2}\right)e^{-j\frac{\omega T - \pi}{2}} \\ |H_{e}(f)| &= 2|\sin(\pi f T)| = 2|\sin\left(\pi \frac{f}{f_{s}}\right)| \end{split}$$



- "First order noise Shaping"
 - Quantization noise is attenuated at low frequencies, amplified at high frequencies

In-Band Quantization Noise

- Question: If we had an ideal digital lowpass, what is the achieved SQNR as a function of oversampling ratio?
- Can integrate shaped quantization noise spectrum up to f_B
 and compare to full-scale signal

$$P_{qnoise} = \int_{0}^{f_B} \frac{\Delta^2}{12} \cdot \frac{2}{f_s} \cdot \left[2 \sin \left(\pi \frac{f}{f_s} \right) \right]^2 df$$

$$\cong \int_{0}^{f_B} \frac{\Delta^2}{12} \cdot \frac{2}{f_s} \cdot \left[2 \pi \frac{f}{f_s} \right]^2 df$$

$$\cong \frac{\Delta^2}{12} \cdot \frac{\pi^2}{3} \left[\frac{2f_B}{f_s} \right]^3 = \frac{\Delta^2}{12} \cdot \frac{\pi^2}{3} \frac{1}{M^3}$$

In-Band Quantization Noise

Assuming a full-scale sinusoidal signal, we have

$$SQNR \cong \frac{P_{sig}}{P_{qnoise}} = \frac{\frac{1}{2} \left(\frac{(2^B - 1)\Delta}{2} \right)^2}{\frac{\Delta^2}{12} \cdot \frac{\pi^2}{3} \frac{1}{M^3}} = 1.5 \times (2^B - 1)^2 \times \frac{3}{\frac{\pi^2}{M^2}} \times M^3$$

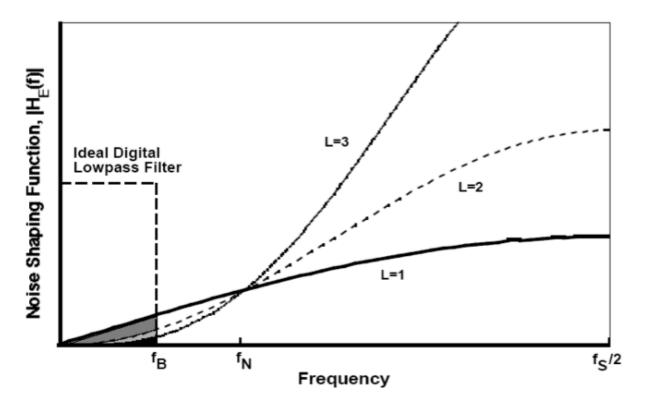
$$\underset{haping \& digital filter}{\underbrace{2 \cdot 3}} \cong 1.76 + 6.02B - 5.2 + 30 \log(M) \quad [dB] \text{ (for large B)}$$

- Each 2x increase in M results in 8x SQNR improvement
 - Also added ½ bit resolution

Higher Order Noise Shaping

□ Lth order noise transfer function

$$H_E(z) = \left(1 - z^{-1}\right)^L$$



Big Ideas

- Multi-Rate Filter Banks (con't)
 - Operating on different frequency bands at lower sampling rates
- Data Converters
 - Oversampling to reduce interference and quantization noise → increase ENOB (effective number of bits)
 - Practical DACs use practical interpolation and reconstruction filters with oversampling
- Noise Shaping
 - Use feedback to reduce oversampling factor

Admin

- □ HW 4 extended to Tuesday at midnight
 - Typo in code in MATLAB problem, corrected handout
 - See Piazza for more information
- New tentative HW schedule posted