ESE 531: Digital Signal Processing

Lec 17: March 28, 2017

Optimal Filter Design

Optimal Filter Design

- Window method
 - Design Filters heuristically using windowed sinc functions
- Optimal design
 - Design a filter h[n] with $H(e^{j\omega})$
 - Approximate $H_d(e^{j\omega})$ with some optimality criteria or satisfies specs.

FIR Design by Windowing

We already saw this before,

$$H(e^{j\omega}) = H_d(e^{j\omega}) * W(e^{j\omega})$$

□ For Boxcar (rectangular) window

$$W(e^{j\omega}) = e^{-j\omega \frac{M}{2}} \frac{\sin(w(M+1)/2)}{\sin(w/2)}$$

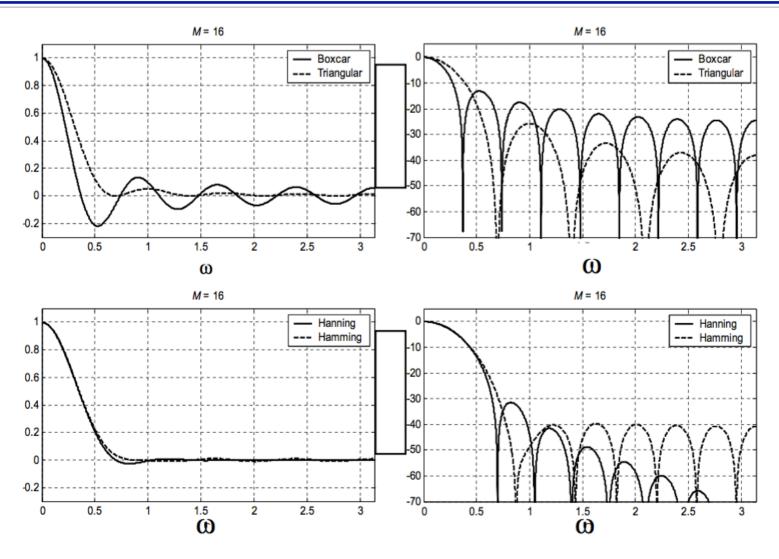
$$H_d(e^{j\omega}) \qquad |W(e^{j\omega})| \qquad |H(e^{j\omega})|$$

$$\angle W(e^{j\omega}) \qquad |W(e^{j\omega})| \qquad |W(e^{j\omega})| \qquad |W(e^{j\omega})|$$

Tapered Windows

Name(s)	Definition	MATLAB Command	Graph (<i>M</i> = 8)
Hann	$w[n] = \begin{cases} \frac{1}{2} \left[1 + \cos\left(\frac{\pi n}{M/2}\right) \right] & n \le M/2 \\ 0 & n > M/2 \end{cases}$	hann (M+1)	hann(M+1), M = 8 1 0.8 5 0.6 0.4 0.2 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Hanning	$w[n] = \begin{cases} \frac{1}{2} \left[1 + \cos\left(\frac{\pi n}{M/2 + 1}\right) \right] & n \le M/2 \\ 0 & n > M/2 \end{cases}$	hanning (M+1)	hanning(M+1), M = 8
Hamming	$w[n] = \begin{cases} 0.54 + 0.46 \cos\left(\frac{\pi n}{M/2}\right) & n \le M/2 \\ 0 & n > M/2 \end{cases}$	hamming (M+1)	hamming(M+1), M = 8

Tradeoff – Ripple vs. Transition Width

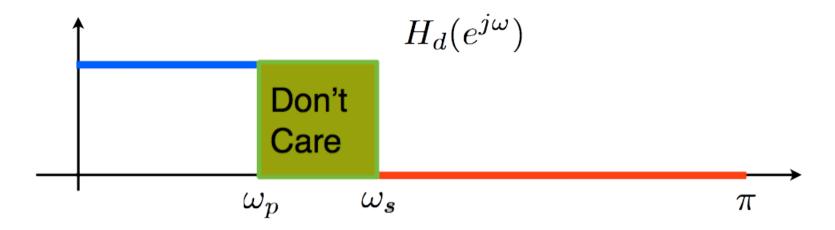


Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Optimal Filter Design

- Window method
 - Design Filters heuristically using windowed sinc functions
- Optimal design
 - Design a filter h[n] with $H(e^{j\omega})$
 - Approximate $H_d(e^{j\omega})$ with some optimality criteria or satisfies specs.

Optimality



□ Least Squares:

minimize
$$\int_{\omega \in \text{care}} |H(e^{j\omega}) - H_d(e^{j\omega})|^2 d\omega$$

Variation: Weighted Least Squares:

minimize
$$\int_{-\pi}^{\pi} W(\omega) |H(e^{j\omega}) - H_d(e^{j\omega})|^2 d\omega$$

Optimality

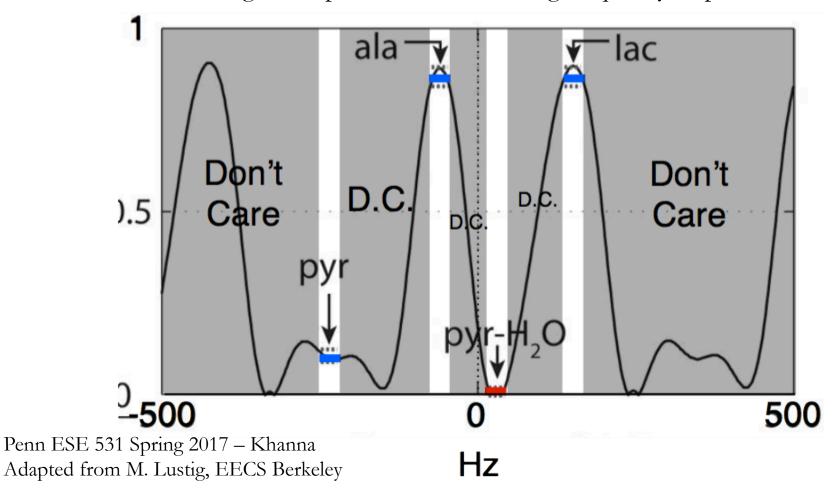
Chebychev Design (min-max)

minimize_{$$\omega \in \text{care}$$} max $|H(e^{j\omega}) - H_d(e^{j\omega})|$

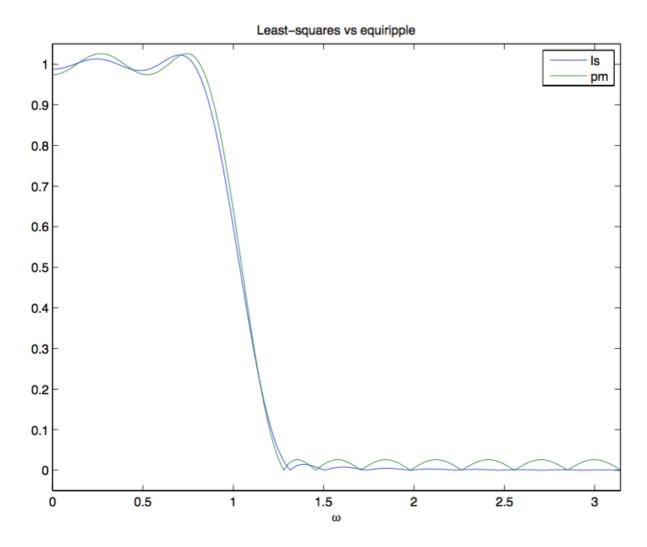
- Parks-McClellan algorithm equi-ripple
- Also known as Remez exchange algorithms (signal.remez)
- Can also use convex optimization

Example of Complex Filter

- Larson et. al, "Multiband Excitation Pulses for Hyperpolarized 13C Dynamic Chemical Shift Imaging" JMR 2008;194(1):121-127
- Need to design 11 taps filter with following frequency response:



Least-Squares v.s. Min-Max



Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Design Through Optimization

□ Idea: Sample/discretize the frequency response

$$H(e^{j\omega}) \Rightarrow H(e^{j\omega_k})$$

□ Sample points are fixed $\omega_k = k \frac{\pi}{P}$

$$-\pi \le \omega_1 < \dots < \omega_p \le \pi$$

- □ M+1 is the filter order
- \square P >> M + 1 (rule of thumb P=15M)
- Yields a (good) approximation of the original problem

Example: Least Squares

- □ Target: Design M+1= 2N+1 filter
- lacksquare First design non-causal $ilde{H}(e^{j\omega})$ and hence $ilde{h}[n]$

Example: Least Squares

- □ Target: Design M+1= 2N+1 filter
- ullet First design non-causal $ilde{H}(e^{j\omega})$ and hence $ilde{h}[n]$
- □ Then, shift to make causal

$$h[n] = \tilde{h}[n - M/2]$$

$$H(e^{j\omega}) = e^{-j\frac{M}{2}}\tilde{H}(e^{j\omega})$$

Mathematical Optimization

(mathematical) optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \leq b_i, \quad i = 1, \dots, m$

- $x = (x_1, \ldots, x_n)$: optimization variables
- $f_0: \mathbf{R}^n \to \mathbf{R}$: objective function
- $f_i: \mathbb{R}^n \to \mathbb{R}$, $i=1,\ldots,m$: constraint functions

optimal solution x^{\star} has smallest value of f_0 among all vectors that satisfy the constraints

Examples

portfolio optimization

- variables: amounts invested in different assets
- constraints: budget, max./min. investment per asset, minimum return
- objective: overall risk or return variance

device sizing in electronic circuits

- variables: device widths and lengths
- constraints: manufacturing limits, timing requirements, maximum area
- objective: power consumption

data fitting

- variables: model parameters
- constraints: prior information, parameter limits
- objective: measure of misfit or prediction error

Solving Optimization Problems

general optimization problem

- very difficult to solve
- methods involve some compromise, e.g., very long computation time, or not always finding the solution

exceptions: certain problem classes can be solved efficiently and reliably

- least-squares problems
- linear programming problems
- convex optimization problems

Linear Programming

minimize
$$c^T x$$
 subject to $a_i^T x \leq b_i, \quad i = 1, \dots, m$

solving linear programs

- no analytical formula for solution
- reliable and efficient algorithms and software
- computation time proportional to n^2m if $m \ge n$; less with structure
- a mature technology

using linear programming

- not as easy to recognize as least-squares problems
- a few standard tricks used to convert problems into linear programs (e.g., problems involving ℓ_1 or ℓ_∞ -norms, piecewise-linear functions)

Least-Squares Optimization

minimize
$$||Ax - b||_2^2$$

solving least-squares problems

- analytical solution: $x^* = (A^T A)^{-1} A^T b$
- reliable and efficient algorithms and software
- computation time proportional to n^2k ($A \in \mathbf{R}^{k \times n}$); less if structured
- a mature technology

using least-squares

- least-squares problems are easy to recognize
- a few standard techniques increase flexibility (e.g., including weights, adding regularization terms)

Convex Optimization

minimize
$$f_0(x)$$

subject to $f_i(x) \leq b_i, \quad i = 1, \dots, m$

objective and constraint functions are convex:

$$f_i(\alpha x + \beta y) \le \alpha f_i(x) + \beta f_i(y)$$

if
$$\alpha + \beta = 1$$
, $\alpha \ge 0$, $\beta \ge 0$

• includes least-squares problems and linear programs as special cases

Example: Least Squares

$$ilde{h} = \left[ilde{h}[-N], ilde{h}[-N+1], \cdots, ilde{h}[N]
ight]^T$$

$$b = \left[H_d(e^{j\omega_1}), \cdots, H_d(e^{j\omega_P}) \right]^T$$

$$A = \begin{bmatrix} e^{-j\omega_1(-N)} & \cdots & e^{-j\omega_1(+N)} \\ \vdots & & & \\ e^{-j\omega_P(-N)} & \cdots & e^{-j\omega_P(+N)} \end{bmatrix}$$

$$\operatorname{argmin}_{\tilde{h}} ||A\tilde{h} - b||^2$$

Least-Squares

$$\operatorname{argmin}_{\tilde{h}} ||A\tilde{h} - b||^2$$

Solution:

$$\tilde{h} = (A^*A)^{-1}A^*b$$

- Result will generally be non-symmetric and complex valued.
- lacktriangleq However, if $\tilde{H}(e^{j\omega})$ is real, $\tilde{h}[n]$ should have symmetry!

Design of Linear-Phase L.P Filter

- Suppose:
 - $ilde{H}(e^{j\omega})$ is real-symmetric
 - M is even (M+1 taps)
- □ Then:
 - $\tilde{h}[n]$ is real-symmetric around midpoint
- □ So:

$$\tilde{H}(e^{j\omega}) = \tilde{h}[0] + \tilde{h}[1]e^{-j\omega} + \tilde{h}[-1]e^{+j\omega} + \tilde{h}[2]e^{-j2\omega} + \tilde{h}[-2]e^{+j2\omega} \cdots = \tilde{h}[0] + 2\cos(\omega)\tilde{h}[1] + 2\cos(2\omega)\tilde{h}[2] + \cdots$$

Reminder: FIR GLP: Type I – Example, M=4

Type I Even Symmetry, M even

$$h[n] = h[M-n], \quad n = 0,1,...,M$$

Then
$$H(e^{j\omega}) = \sum_{n=0}^{M} h[n]e^{-j\omega n} = \underbrace{A(w)}_{\text{Real,Even}} e^{-j\omega M/2}$$
 integer delay

$$H(e^{j\omega}) = h[0] + h[1]e^{-j\omega} + h[2]e^{-j2\omega} + h[3]e^{-j3\omega} + h[4]e^{-j4\omega}$$

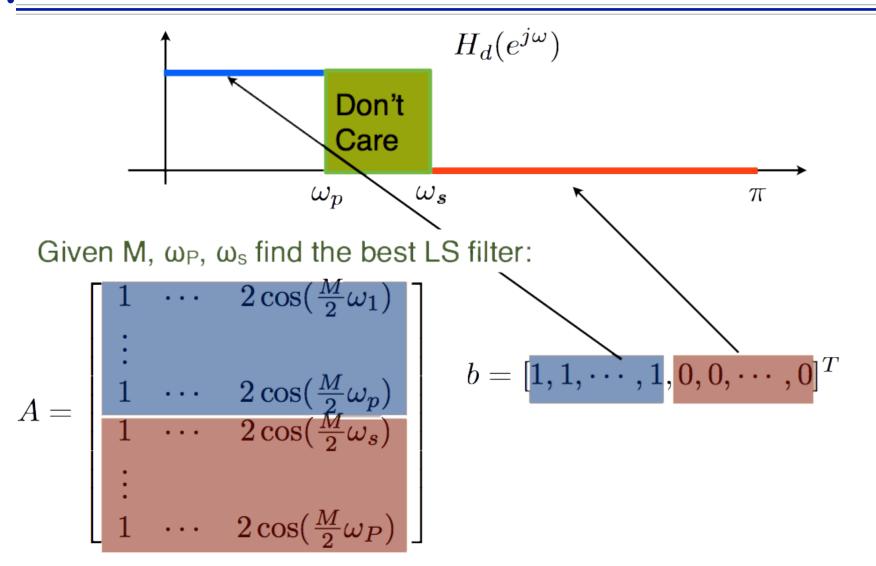
$$= e^{-j2\omega} \left[h[0]e^{j2\omega} + h[1]e^{j\omega} + h[2] + h[1]e^{-j\omega} + h[0]e^{-j2\omega} \right]$$

$$= \left[2h[0]\cos(2\omega) + 2h[1]\cos(\omega) + h[2] \right] e^{-j2\omega}$$

$$A(\omega) (even)$$

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Least-Squares Linear Phase Filter



Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Least-Squares Linear Phase Filter

Given M, ω_P , ω_s find the best LS filter:

$$A = egin{bmatrix} 1 & \cdots & 2\cos(rac{M}{2}\omega_1) \ dots & 1 & \cdots & 2\cos(rac{M}{2}\omega_p) \ 1 & \cdots & 2\cos(rac{M}{2}\omega_s) \ dots & 1 & \cdots & 2\cos(rac{M}{2}\omega_P) \end{bmatrix} \quad b = [1,1,\cdots,1,0,0,\cdots,0]^T$$

$$b = [1, 1, \cdots, 1, 0, 0, \cdots, 0]^T$$

$$\tilde{h}_{+} = [\tilde{h}[0], \cdots, \tilde{h}[\frac{M}{2}]]^{T} = (A^{*}A)^{-1}A^{*}b$$

$$\tilde{h} = \begin{cases} \tilde{h}_{+}[n] & n \geq 0\\ \tilde{h}_{+}[-n] & n < 0 \end{cases}$$

$$h[n] = \tilde{h}[n - M/2]$$

Extension:

- □ LS has no preference for pass band or stop band
- □ Use weighting of LS to change ratio

want to solve the discrete version of:

minimize
$$\int_{-\pi}^{\pi} W(\omega) |H(e^{j\omega}) - H_d(e^{j\omega})|^2 d\omega$$

where $W(\omega)$ is δp in the pass band and δs in stop band Similarly: $W(\omega)$ is 1 in the pass band and $\delta p/\delta s$ in stop band

Weighted Least-Squares

$$\operatorname{argmin}_{\tilde{h}_{+}} \quad (A\tilde{h}_{+} - b)^{*}W^{2}(A\tilde{h} - b)$$

Solution:

$$\tilde{h}_{+} = (A^*W^2A)^{-1}W^2A^*b$$

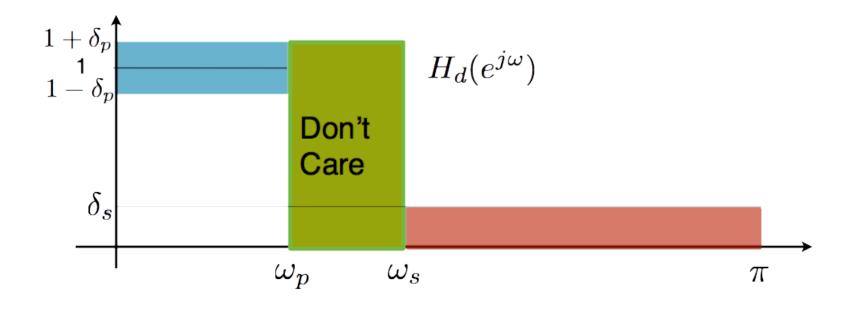
Optimality

Chebychev Design (min-max)

minimize_{$$\omega \in \text{care}$$} max $|H(e^{j\omega}) - H_d(e^{j\omega})|$

- Parks-McClellan algorithm equi-ripple
- Also known as Remez exchange algorithms (signal.remez)
- Can also use convex optimization

Specifications



□ Filter specifications are given in terms of boundaries

Min-Max Filter Design

Minimize:

max pass-band ripple

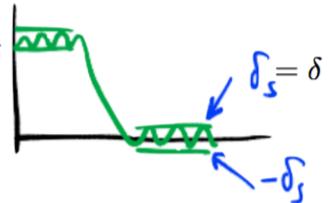
$$1 - \delta_p \le |H(e^{j\omega})| \le 1 + \delta_p, \qquad 0 \le w \le \omega_p$$

min-max stop-band ripple

$$|H(e^{j\omega})| \le \delta_s, \qquad \omega_s \le w \le \pi$$

Min-Max Ripple Design

- ullet Recall, $\tilde{H}(e^{j\omega})$ is symmetric and real
- \square Given ω_{p} , ω_{s} , M, find δ , \tilde{h}_{+} $\frac{1+\delta}{1-\delta}$



minimize

Subject to:

$$1 - \delta \le \tilde{H}(e^{j\omega_k}) \le 1 + \delta \qquad 0 \le \omega_k \le \omega_p$$
$$-\delta \le \tilde{H}(e^{j\omega_k}) \le \delta \qquad \omega_s \le \omega_k \le \pi$$
$$\delta > 0$$

- $lue{}$ Formulation is a linear program with solution δ , h_+
- □ A well studied class of problems

Min-Max Ripple via LP

δ

subject to:

$$1 - \delta \leq A_p \tilde{h}_+ \leq 1 + \delta$$
 $-\delta \leq A_s \tilde{h}_+ \leq \delta$
 $\delta > 0$

$$A_p = egin{bmatrix} 1 & 2\cos(\omega_1) & \cdots & 2\cos(rac{M}{2}\omega_1) \ & dots \ 1 & 2\cos(\omega_p) & \cdots & 2\cos(rac{M}{2}\omega_p) \end{bmatrix}$$
 $A_s = egin{bmatrix} 1 & 2\cos(\omega_s) & \cdots & 2\cos(rac{M}{2}\omega_s) \ dots & dots \ 1 & 2\cos(\omega_P) & \cdots & 2\cos(rac{M}{2}\omega_P) \end{pmatrix}$ capital P

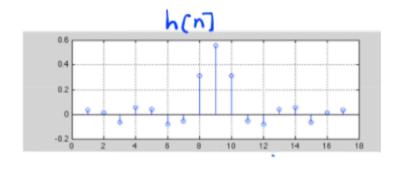
Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

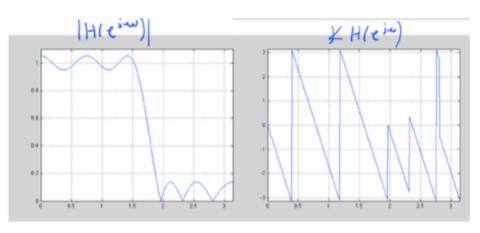
Convex Optimization

- Many tools and Solvers
- □ Tools:
 - CVX (Matlab) http://cvxr.com/cvx/
 - CVXOPT, CVXMOD (Python)
- Engines:
 - Sedumi (Free)
 - MOSEK (commercial)

Using CVX (in Matlab)

```
M = 16;
wp = 0.5*pi;
ws = 0.6*pi;
MM = 15*M;
w = linspace(0,pi,MM);
idxp = find(w \le wp);
idxs = find(w \ge ws);
Ap = [ones(length(idxp), 1) 2*cos(kron(w(idxp))',
[1:M/2]))];
As = [ones(length(idxs), 1) 2*cos(kron(w(idxs))',
[1:M/2]))];
% optimization
cvx begin
  variable hh(M/2+1,1);
  variable d(1,1);
  minimize(d)
  subject to
    Ap*hh \le 1+d;
    Ap*hh >= 1-d;
    As*hh < d;
    As*hh > -d;
    ds>0:
cvx end
h = [hh(end:-1:1); hh(2:end)];
```





Admin

- □ HW 6 due tonight @ midnight
- □ HW 7 posted after class tonight
 - Due 4/6