ESE 531: Digital Signal Processing

Lec 17: March 28, 2017 Optimal Filter Design

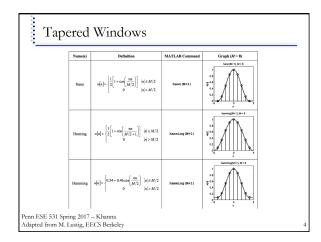
Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

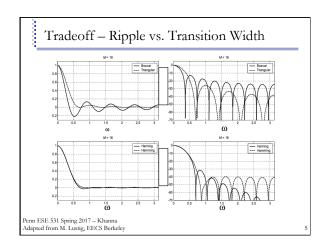
Optimal Filter Design

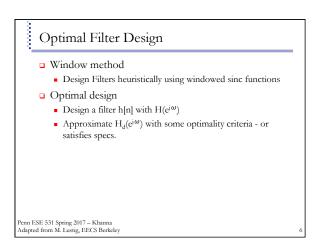
- Window method
 - Design Filters heuristically using windowed sinc functions
- Optimal design
 - Design a filter h[n] with H(e^{jω})
 - Approximate H_d(e^{j w}) with some optimality criteria or satisfies specs.

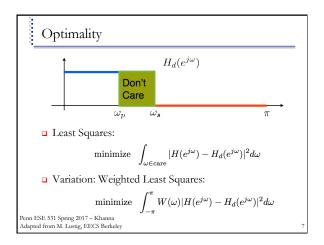
Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

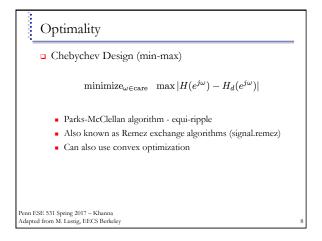
FIR Design by Windowing • We already saw this before, $H(e^{j\omega}) = H_d(e^{j\omega}) * W(e^{j\omega})$ • For Boxcar (rectangular) window $W(e^{j\omega}) = e^{-j\omega \frac{M}{2}} \frac{\sin(w(M+1)/2)}{\sin(w/2)}$ $\frac{|W(e^{j\omega})|}{\sum_{\omega \in J^{\omega}} |W(e^{j\omega})|} = \frac{|H(e^{j\omega})|}{\sum_{\omega \in J^{\omega}} |W(e^{j\omega})|}$ Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

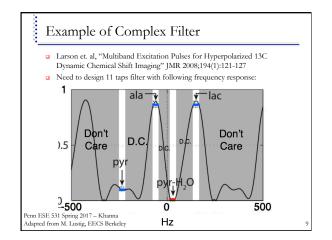


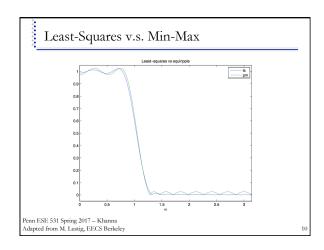












Design Through Optimization

Idea: Sample/discretize the frequency response $H(e^{j\omega}) \Rightarrow H(e^{j\omega_k})$ Sample points are fixed $\omega_k = k\frac{\pi}{P}$ $-\pi \leq \omega_1 < \cdots < \omega_p \leq \pi$ M+1 is the filter order P >> M+1 (rule of thumb P=15M) Yields a (good) approximation of the original problem

Pene ESE 531 Spring 2017- Khanna Adapted from M. Lustig, EECS Berkeley

Example: Least Squares

Target: Design M+1= 2N+1 filter
First design non-causal $\tilde{H}(e^{j\omega})$ and hence $\tilde{h}[n]$ Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Example: Least Squares

- □ Target: Design M+1= 2N+1 filter
- ullet First design non-causal $\tilde{H}(e^{j\omega})$ and hence $\tilde{h}[n]$
- □ Then, shift to make causal

$$h[n] = \tilde{h}[n-M/2]$$

$$H(e^{j\omega}) = e^{-j\frac{M}{2}}\tilde{H}(e^{j\omega})$$

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Mathematical Optimization

(mathematical) optimization problem

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq b_i, \quad i=1,\ldots,m \end{array}$$

- $x = (x_1, \ldots, x_n)$: optimization variables
- $f_0: \mathbf{R}^n \to \mathbf{R}$: objective function
- $f_i: \mathbf{R}^n \to \mathbf{R}, \ i=1,\ldots,m$: constraint functions

optimal solution x^{\star} has smallest value of f_0 among all vectors that satisfy the constraints

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Examples

portfolio optimization

- · variables: amounts invested in different assets
- constraints: budget, max./min. investment per asset, minimum return
- · objective: overall risk or return variance

device sizing in electronic circuits

- variables: device widths and lengths
- · constraints: manufacturing limits, timing requirements, maximum area
- objective: power consumption

data fitting

- variables: model parameters
- constraints: prior information, parameter limits
- objective: measure of misfit or prediction error

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Solving Optimization Problems

general optimization problem

- · very difficult to solve
- ullet methods involve some compromise, $\emph{e.g.}$, very long computation time, or not always finding the solution

exceptions: certain problem classes can be solved efficiently and reliably

- linear programming problems
- convex optimization problems

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Linear Programming

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & a_i^T x \leq b_i, \quad i=1,\ldots,m \end{array}$$

solving linear programs

- no analytical formula for solution
- reliable and efficient algorithms and software
- ullet computation time proportional to n^2m if $m\geq n$; less with structure
- a mature technology

using linear programming

- not as easy to recognize as least-squares problems
- a few standard tricks used to convert problems into linear programs (e.g., problems involving ℓ_1 - or ℓ_∞ -norms, piecewise-linear functions)

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Least-Squares Optimization

minimize $||Ax - b||_2^2$

solving least-squares problems

- \bullet analytical solution: $x^\star = (A^TA)^{-1}A^Tb$
- reliable and efficient algorithms and software
- \bullet computation time proportional to n^2k ($A\in\mathbf{R}^{k\times n});$ less if structured
- a mature technology

using least-squares

- · least-squares problems are easy to recognize
- \bullet a few standard techniques increase flexibility (e.g., including weights, adding regularization terms)

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Convex Optimization

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq b_i, \quad i=1,\ldots,m \end{array}$$

• objective and constraint functions are convex:

$$f_i(\alpha x + \beta y) \le \alpha f_i(x) + \beta f_i(y)$$

if
$$\alpha + \beta = 1$$
, $\alpha \ge 0$, $\beta \ge 0$

• includes least-squares problems and linear programs as special cases

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Example: Least Squares

$$\tilde{h} = \left[\tilde{h}[-N], \tilde{h}[-N+1], \cdots, \tilde{h}[N]\right]^T$$

$$b = \left[H_d(e^{j\omega_1}), \cdots, H_d(e^{j\omega_P}) \right]^T$$

$$A = \left[\begin{array}{ccc} e^{-j\omega_1(-N)} & \cdots & e^{-j\omega_1(+N)} \\ \vdots & & & \\ e^{-j\omega_P(-N)} & \cdots & e^{-j\omega_P(+N)} \end{array} \right]$$

$$\operatorname{argmin}_{\tilde{h}} ||A\tilde{h} - b||^2$$

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkele

Least-Squares

$$\underset{\tilde{h}}{\operatorname{argmin}}_{\tilde{h}} \ ||A\tilde{h}-b||^2$$

$$\tilde{h} = (A^*A)^{-1}A^*b$$

- □ Result will generally be non-symmetric and complex
- \square However, if $\tilde{H}(e^{j\omega})$ is real, $\tilde{h}[n]$ should have symmetry!

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Design of Linear-Phase L.P Filter

- □ Suppose:
 - $\tilde{H}(e^{j\omega})$ is real-symmetric
 - M is even (M+1 taps)
- - ñ[n] is real-symmetric around midpoint

$$\begin{array}{lcl} \tilde{H}(e^{j\omega}) & = & \tilde{h}[0] + \tilde{h}[1]e^{-j\omega} + \tilde{h}[-1]e^{+j\omega} \\ & & + \tilde{h}[2]e^{-j2\omega} + \tilde{h}[-2]e^{+j2\omega} \cdot \cdot \cdot \\ & = & \tilde{h}[0] + 2\cos(\omega)\tilde{h}[1] + 2\cos(2\omega)\tilde{h}[2] + \cdot \cdot \cdot \end{array}$$

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Reminder: FIR GLP: Type I – Example, M=4

Type I Even Symmetry, M even

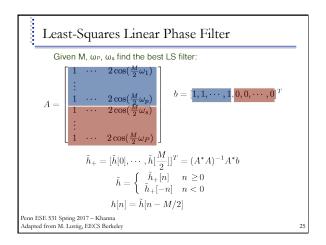
$$h[n] = h[M - n], \quad n = 0, 1, ..., M$$

Then
$$H(e^{j\omega}) = \sum_{n=0}^{M} h[n]e^{-j\omega n} = \underbrace{A(w)}_{\text{Real, Even}} e^{-j\omega M/2}$$
 integer delay

$$\begin{split} H(e^{j\omega}) &= h[0] + h[1]e^{-j\omega} + h[2]e^{-j2\omega} + h[3]e^{-j3\omega} + h[4]e^{-j4\omega} \\ &= e^{-j2\omega} \bigg[h[0]e^{j2\omega} + h[1]e^{j\omega} + h[2] + h[1]e^{-j\omega} + h[0]e^{-j2\omega} \bigg] \\ &= \underbrace{ \left[2h[0]\cos(2\omega) + 2h[1]\cos(\omega) + h[2] \right]}_{A(\omega) \ (even)} e^{-j2\omega} \end{split}$$

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Least-Squares Linear Phase Filter $H_d(e^{j\omega})$ Don't Care Given M, ω_P , ω_s find the best LS filter: $1 \cdots 2\cos(\frac{M}{2}\omega_1)$ $b = [1, 1, \cdots, 1, 0, 0, \cdots, 0]^T$ $2\cos(\frac{M}{2}\omega_P)$ Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkele



Extension:

- □ LS has no preference for pass band or stop band
- □ Use weighting of LS to change ratio

want to solve the discrete version of:

minimize
$$\int_{-\pi}^{\pi} W(\omega) |H(e^{j\omega}) - H_d(e^{j\omega})|^2 d\omega$$

where $W(\omega)$ is δp in the pass band and δs in stop band

Similarly: $W(\omega)$ is 1 in the pass band and $~\delta p/\delta s$ in stop band

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Weighted Least-Squares

$$\operatorname{argmin}_{\tilde{h}_{+}} \quad (A\tilde{h}_{+} - b)^{*}W^{2}(A\tilde{h} - b)$$

Solution:

$$\tilde{h}_{+} = (A^*W^2A)^{-1}W^2A^*b$$

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

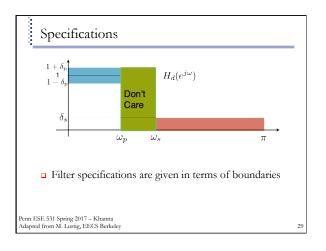
Optimality

□ Chebychev Design (min-max)

$$\text{minimize}_{\omega \in \text{care}} \quad \max |H(e^{j\omega}) - H_d(e^{j\omega})|$$

- Parks-McClellan algorithm equi-ripple
- · Also known as Remez exchange algorithms (signal.remez)
- Can also use convex optimization

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkele



Min-Max Filter Design

- Minimize:
 - max pass-band ripple

$$1 - \delta_p \le |H(e^{j\omega})| \le 1 + \delta_p, \qquad 0 \le w \le \omega_p$$

min-max stop-band ripple

$$|H(e^{j\omega})| \le \delta_s, \qquad \omega_s \le w \le \pi$$

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Min-Max Ripple Design ullet Recall, $\tilde{H}(e^{j\omega})$ is symmetric and real Given ω_{p} , ω_{s} , M, find δ , \tilde{h}_{+} $\frac{1+\delta}{1-\delta}$ minimize Subject to: $1 - \delta \le \tilde{H}(e^{j\omega_k}) \le 1 + \delta \qquad 0 \le \omega_k \le \omega_p$ $-\delta \leq \tilde{H}(e^{j\omega_k}) \leq \delta$ $\omega_s \leq \omega_k \leq \pi$

- \Box Formulation is a linear program with solution δ , \tilde{h}_{+}
- □ A well studied class of problems

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

```
Min-Max Ripple via LP
                                  minimize
                             subject to:
                                                                    1 - \delta \preceq A_p \tilde{h}_+ \preceq 1 + \delta
                                                                  -\delta \preceq A_s \tilde{h}_+ \preceq \delta
                                                                    \delta > 0
                   1 \quad 2\cos(\omega_1) \quad \cdots \quad 2\cos(\frac{M}{2}\omega_1)
                     :

1 2\cos(\omega_p) ··· 2\cos(\frac{M}{2}\omega_p)
                                                                    capital P
                   1 \quad 2\cos(\omega_P) \quad \cdots \quad 2\cos(\frac{M}{2}\omega_P)
Penn ESE 531 Spring 2017 – Khanna
Adapted from M. Lustig, EECS Berkeley
```

Convex Optimization

- Many tools and Solvers
- □ Tools:
 - CVX (Matlab) http://cvxr.com/cvx/
 - CVXOPT, CVXMOD (Python)
- □ Engines:
 - Sedumi (Free)
 - MOSEK (commercial)

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Using CVX (in Matlab) Ap = [ones(length(idxp),1) 2*cos(kron(w(idxp)), ength(idxs),1) 2*cos(kron(w(idxs)), Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Admin

- □ HW 6 due tonight @ midnight
- □ HW 7 posted after class tonight
 - Due 4/6

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley