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Optimal Filter Design

oelsiese’s

a Window method

= Design Filters heuristically using windowed sinc functions
0 Optimal design

= Design a filter h[n] with H(el%)

= Approximate H,(el*’) with some optimality criteria - or
satisfies specs.
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FIR Design by Windowing

o We already saw this before,
H (%) = Hy(e?) * W (e??)
0 For Boxcar (rectangular) window

joy _jw%sin(w(M—i-l)/?)
W(e) =e sin(w/2)

Hy(e?) W ()] |H(e™)]

e
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Tradeoff — Ripple vs. Transition Width
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M=16 M=16
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¢ Tapered Windows
:
Name) Detiion MATLAB Command | Graph1-9
ey
ol
N H‘m{%]] | ey [ 34
) > M2 o J/
e
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¢ Optimal Filter Design
:
0 Window method
= Design Filters heuristically using windowed sinc functions
0 Optimal design
= Design a filter h[n] with H(e/%)
= Approximate Hy(el*) with some optimality criteria - or
satisfies specs.
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Optimality

oelsiese’s

Hy(e*)

wp ws ™

0 Least Squares:
minimize / |H (&) — Ha(e?)*dw
weEcare

0 Variation: Weighted Least Squares:

”
minimize W (w)|H(e7*) — Hy(e?)|2dw
-
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Example of Complex Filter

o Larson et. al, “Multiband Excitation Pulses for Hyperpolarized 13C
Dynamic Chemical Shift Imaging” JMR 2008;194(1):121-127
0 Need to design 11 taps filter with following frequency response:

1

ala—y v lac

J
=500 0 500
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Design Through Optimization

0 Idea: Sample/discretize the frequency response
H(e?) = H(el“r)

™

o Sample points are fixed —wp =k

=

Tl w < - <wp <7

0 M+1 is the filter order

o P>>M + 1 (rule of thumb P=15M)

0 Yields a (good) approximation of the original
problem
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Optimality

a Chebychev Design (min-max)
minimize, ccare  max |H(e9*) — Hy(e?)|

= Parks-McClellan algorithm - equi-ripple
= Also known as Remez exchange algorithms (signal.remez)

= Can also use convex optimization

Penn ESE 531 Spring 2017 — Khanna
Adapted from M. Lustig, EECS Berkeley

seseees

Least-Squares v.s. Min-Max

Loast-squares vs equiripple

o 05 1 5 2 25 3
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Example: Least Squares

o Target: Design M+1= 2N+1 filter

o First design non-causal H (ej “)and hence hln]
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Example: Least Squares

0 Target: Design M+1= 2N+1 filter

o First design non-causal H (e7*) and hence hfn]

0 Then, shift to make causal

hin] = h|n — M /2]

H(e*) = e™9% H ()
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portfolio optimization
© variables: amounts invested in different assets
e constraints: budget, max./min. investment per asset, minimum return

e objective: overall risk or return variance

device sizing in electronic circuits
e variables: device widths and lengths
e constraints: manufacturing limits, timing requirements, maximum area

e objective: power consumption
data fitting
e variables: model parameters

e constraints: prior information, parameter limits

o objective: measure of misfit or prediction error
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Linear Programming

minimize ¢’z
subject to afz <b;, i=1,...,m
solving linear programs
e no analytical formula for solution
e reliable and efficient algorithms and software
e computation time proportional to n?m if m > n; less with structure

e a mature technology

using linear programming
e not as easy to recognize as least-squares problems

e a few standard tricks used to convert problems into linear programs
(e.g., problems involving £1- or £.-norms, piecewise-linear functions)
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Mathematical Optimization

oelsiese’s

(mathematical) optimization problem

minimize  fo(z)
subject to  fi(z) <b;, i=1,...,m

e z = (z1,...,Z,): optimization variables
e fo: R™ — R: objective function
e fi:R* =R, i=1,...,m: constraint functions

optimal solution z* has smallest value of fu among all vectors that
satisfy the constraints

Adapted from M. Lustig, EECS Berkeley
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Solving Optimization Problems

general optimization problem
o very difficult to solve

e methods involve some compromise, e.g., very long computation time, or
not always finding the solution

exceptions: certain problem classes can be solved efficiently and reliably

e |east-squares problems
e linear programming problems

e convex optimization problems
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Least-Squares Optimization

minimize || Az — b||3
solving least-squares problems
o analytical solution: z* = (ATA)~1ATb
e reliable and efficient algorithms and software

e computation time proportional to n?k (A4 € ka"); less if structured

e a mature technology
using least-squares

o least-squares problems are easy to recognize

e a few standard techniques increase flexibility (e.g., including weights,
adding regularization terms)
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Convex Optimization

minimize  fo(z)
subject to  fi(z) <b;, i=1,...,m

e objective and constraint functions are convex:
filaz + By) < afi(z) + Bfi(y)
fa+B8=1a>0,8>0

e includes least-squares problems and linear programs as special cases
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Example: Least Squares

~ - ~ - T
h= [h[—N], Al-N +1],--- ,h[N]]

b= [Hy(e?), -, Ha(e?")]"
e—ien(-N) —dwr(+N)
A= :
e—Jdwp(=N) e—iwp(+N)
: 7 2
argmin; |[Ah — b||
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Least-Squares

argmin; ||Ah — b||?

Solution:

h=(A*A)"'A%

0 Result will generally be non-symmetric and complex
valued.

o However, if H (€9%) is real, hjn] should have
symmetry!
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Design of Linear-Phase L.P Filter

a Suppose:
= H (€9%) is real-symmetric
= Mis even (M+1 taps)
0 Then:
= hfn] is real-symmetric around midpoint

a So:

H(e™™) = h[0] +h[1l]e™* + h[-1]e*9¥
+h[2]e2% 4 h[-2]etI2 ...

= R[0] + 2 cos(w)h[1] + 2 cos(2w)h[2] + - --
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Reminder: FIR GLP: Type I — Example, M=4

Type I Even Symmetry, M even
h[n]=HM —n], n=0,,.,.M

M
Then H(e/®)=Y h[nle /™ = A(w) e /1"
n=0 Real, Even " integer delay
H(e’®) = h[0]+ A[1]le™"® + B[2)e™72® + h[3]e > + h[4]e~/*®
—e /2@ I:h[o]eﬂw + h[l]ejw +h[2]+ h[l]e_j"’ + h[o]e—ij:I
=[2h[0]cos(2m) + 2A[1]cos(w) + h[2]] & >*
A(w) (even)
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Least-Squares Linear Phase Filter

Hy(e?)

wp Ws ™

Given M, wp, ws find the best LS filter:
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Least-Squares Linear Phase Filter

oelsiese’s

Given M, we, ws find the best LS filter:

v BEES1 0050

b = (b0 BT = (47 ) A%
= hyln] n>0
hi{ ;L:[—n] n<0
hln] = hln — M/2]
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Extension:

oelsiese’s

a LS has no preference for pass band or stop band
0 Use weighting of LS to change ratio

want to solve the discrete version of:

minimize W (w)|H(e?) — Hy(e?)|?dw
-

where W(w) is dp in the pass band and ds in stop band

Similarly: W(w) is 1 in the pass band and dp/ds in stop band
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Weighted Least-Squares

seseees

(Ahy — b)*W?2(Ah —b)

argmin,—l+
Solution:
hy = (A*W2A)"'W2A%b

1 0
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Optimality

a Chebychev Design (min-max)
minimize, ccare  max |H(e?*) — Hy(e’)|
= Parks-McClellan algorithm - equi-ripple

= Also known as Remez exchange algorithms (signal.remez)

= Can also use convex optimization
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Specifications

eelsieeels

Wp ws ™

0 Filter specifications are given in terms of boundaries
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Min-Max Filter Design

0 Minimize:

= max pass-band ripple

1-0, <[H(™)| <146, 0<w<w,
= min-max stop-band ripple
|H(e™)| <65y,  ws<w<T
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Min-Max Ripple Design

0 Recall, H(e?) is symmetric and real

o Given w,, w,M, find 8,7, 11+%

minimize )
Subject to :
1-6<H(E™ ) <146
< H()<d
§>0

0<wr <wp

ws Swp <
0 Formulation is a linear program with solution 8, }~L+
0 A well studied class of problems
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Convex Optimization

0 Many tools and Solvers

o Tools:
= CVX (Matlab) http://cvxr.com/cvx
= CVXOPT, CVXMOD (Python)

o Engines:
= Sedumi (Free)

= MOSEK (commercial)
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Admin
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a HW 6 due tonight @ midnight

0 HW 7 posted after class tonight
= Due 4/6
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Min-Max Ripple via LP

]

1 2cos(w:)

1 2cos(wp)

1 2cos(ws)

A= :
1 2cos(wr)
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minimize 1)

subject to :

1—6=<Ahy <146
< Aghy <6

6>0

2cos(Mw,) :|

o( M )
capital P
2cos(Ywp

seseees

Using CVX (in Matlab)

MM = 15%M;

[(1:M2))];

[:M2)));

‘minimize(d)
subject to

Ap*h

ds>0;

w = linspace(0,pi, MM);

idxp = find(w <-wp);
idxs = find(w >=ws);

As = [ones(length(idxs), 1) 2*cos(kron(w(idxs),
% optimization

variable hh(M/2+1,1);
variable d(1,1);

Ap*hh <=1+;

Asthh< &
As*hh > -d;

Ap = [ones(length(idxp), 1) 2*cos(kron(w(idxp),
o

evx_end
b= [bh(end:-1:1) ; hh(2:end)];
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