## ESE 531: Digital Signal Processing

Lec 2: January 17, 2017 Discrete Time Signals and Systems



#### Lecture Outline

- Discrete Time Signals
- Signal Properties
- Discrete Time Systems

# Discrete Time Signals



#### Signals

**Signal** (n): A detectable physical quantity ... by which messages or information can be transmitted (Merriam-Webster)

- Signals carry information
- Examples:
  - Speech signals transmit language via acoustic waves
  - Radar signals transmit the position and velocity of targets via electromagnetic waves
  - Electrophysiology signals transmit information about processes inside the body
  - Financial signals transmit information about events in the economy
- □ Signal processing systems manipulate the information carried by signals

#### Signals are Functions

DEFINITION

A signal is a function that maps an independent variable to a dependent variable.

- Signal x[n]: each value of n produces the value x[n]
- In this course, we will focus on discrete-time signals:
  - Independent variable is an **integer**:  $n \in \mathbb{Z}$  (will refer to as <u>time</u>)
  - Dependent variable is a real or complex number:  $x[n] \in \mathbb{R}$  or  $\mathbb{C}$



# A Menagerie of Signals

Google Share daily share price for 5 months



■ Temperature at Houston Intercontinental Airport in 2013 (Celcius)



Excerpt from Shakespeare's Hamlet



# Plotting Signals Correctly

- In a discrete-time signal x[n], the independent variable n is discrete (integer)
- To plot a discrete-time signal in a program like Matlab, you should use the <u>stem</u> or similar command and not the <u>plot</u> command
- Correct:



Incorrect:



The **delta function** (aka unit impulse)  $\delta[n] = \begin{cases} 1 & n=0 \\ 0 & \text{otherwise} \end{cases}$ 



 $\blacksquare$  The shifted delta function  $\delta[n-m]$  peaks up at n=m; here m=9



### Unit Step

DEFINITION

The unit step  $u[n] = \begin{cases} 1 & n \geq 0 \\ 0 & n < 0 \end{cases}$ 



 $\blacksquare$  The shifted unit step u[n-m] jumps from 0 to 1 at n=m; here m=5



#### Unit Pulse

DEFINITION

The **unit pulse** (aka boxcar) 
$$p[n] = \begin{cases} 0 & n < N_1 \\ 1 & N_1 \leq n \leq N_2 \\ 0 & n > N_2 \end{cases}$$

lacksquare Ex: p[n] for  $N_1=-5$  and  $N_2=3$ 



One of many different formulas for the unit pulse

$$p[n] = u[n - N_1] - u[n - (N_2 + 1)]$$

## Real Exponential

DEFINITION

The real exponential  $r[n] = a^n$ ,  $a \in \mathbb{R}$ ,  $a \ge 0$ 

■ For a > 1, r[n] shrinks to the left and grows to the right; here a = 1.1



lacksquare For 0 < a < 1, r[n] grows to the left and shrinks to the right; here a = 0.9



#### Sinusoids

- There are two natural real-valued sinusoids:  $cos(\omega n + \phi)$  and  $sin(\omega n + \phi)$
- **Frequency:**  $\omega$  (units: radians/sample)
- **Phase:**  $\phi$  (units: radians)
- $\cos(\omega n)$



 $=\sin(\omega n)$ 



# Sinusoid Examples



$$= \sin(0n)$$

$$\cos(\pi n)$$









#### Sinusoid in Matlab

■ It's easy to play around in Matlab to get comfortable with the properties of sinusoids

```
N=36;

n=0:N-1;

omega=pi/6;

phi=pi/4;

x=cos(omega*n+phi);

stem(n,x)
```



### Complex Sinusoid

■ The complex-valued sinusoid combines both the cos and sin terms (via Euler's identity)

$$e^{j(\omega n + \phi)} = \cos(\omega n + \phi) + j\sin(\omega n + \phi)$$









### Complex Sinusoid as Helix

$$e^{j(\omega n + \phi)} = \cos(\omega n + \phi) + j\sin(\omega n + \phi)$$



- A complex sinusoid is a **helix** in 3D space  $(Re{}\}, Im{}\}, n)$ 
  - Real part (cos term) is the projection onto the Re{} axis
  - Imaginary part ( $\sin$  term) is the projection onto the  $\mathrm{Im}\{\}$  axis
- $lue{}$  Frequency  $\omega$  determines rotation speed and direction of helix
  - $\omega > 0 \Rightarrow$  anticlockwise rotation
  - $\omega < 0 \Rightarrow$  clockwise rotation

Animation: https://upload.wikimedia.org/wikipedia/commons/4/41/Rising\_circular.gif

## Negative Frequency

ullet Negative frequency is nothing to be afraid of! Consider a sinusoid with a negative frequency  $-\omega$ 

$$e^{j(-\omega)n} = e^{-j\omega n} = \cos(-\omega n) + j\sin(-\omega n) = \cos(\omega n) - j\sin(\omega n)$$

- Also note:  $e^{j(-\omega)n} = e^{-j\omega n} = \left(e^{j\omega n}\right)^*$
- Bottom line: negating the frequency is equivalent to complex conjugating a complex sinusoid,
   which flips the sign of the imaginary, sin term





#### Phase of a Sinusoid

ullet  $\phi$  is a (frequency independent) shift that is referenced to one period of oscillation

$$\cos\left(\frac{\pi}{6}n-0\right)$$

$$\cos\left(\frac{\pi}{6}n - \frac{\pi}{4}\right)$$

$$\cos\left(\frac{\pi}{6}n - \frac{\pi}{2}\right) = \sin\left(\frac{\pi}{6}n\right)$$

$$\cos\left(\frac{\pi}{6}n - 2\pi\right) = \cos\left(\frac{\pi}{6}n\right)$$



# Complex Exponentials

- lacktriangle Complex sinusoid  $e^{j(\omega n + \phi)}$  is of the form  $e^{\mathrm{Purely\ Imaginary\ Numbers}}$
- Generalize to e<sup>General Complex Numbers</sup>
- lacksquare Consider the general complex number  $\ z=|z|\,e^{j\omega}$ ,  $z\in\mathbb{C}$ 
  - |z| = magnitude of z
  - $\omega = \angle(z)$ , phase angle of z
  - Can visualize  $z \in \mathbb{C}$  as a **point** in the **complex plane**
- Now we have

$$z^{n} = (|z|e^{j\omega})^{n} = |z|^{n}(e^{j\omega})^{n} = |z|^{n}e^{j\omega n}$$

- $|z|^n$  is a real exponential  $(a^n \text{ with } a = |z|)$
- e<sup>jωn</sup> is a complex sinusoid

### Complex Exponentials

$$z^n = (|z| e^{j\omega n})^n = |z|^n e^{j\omega n}$$

- $|z|^n$  is a **real exponential** envelope  $(a^n \text{ with } a = |z|)$
- $lackbox{e}^{j\omega n}$  is a complex sinusoid

$$|z|<1 \qquad |z|>1$$
 
$$\operatorname{Re}(z^n), \ |z|<1 \qquad \operatorname{Re}(z^n), \ |z|>1$$
 
$$\operatorname{Re}(z^n), \ |z|>1$$
 
$$\operatorname{Im}(z^n), \ |z|<1 \qquad \operatorname{Im}(z^n), \ |z|>1$$
 
$$\operatorname{Im}(z^n), \ |z|>1$$
 
$$\operatorname{Im$$

### Digital Signals

- Digital signals are a special sub-class of discrete-time signals
  - Independent variable is still an integer:  $n \in \mathbb{Z}$
  - Dependent variable is from a finite set of integers:  $x[n] \in \{0,1,\ldots,D-1\}$
  - ullet Typically, choose  $D=2^q$  and represent each possible level of x[n] as a digital code with q bits
  - Ex: Digital signal with q=2 bits  $\Rightarrow D=2^2=4$  levels



ullet Ex: Compact discs use q=16 bits  $\Rightarrow D=2^{16}=65536$  levels

# Signal Properties



# Finite/Infinite Length Sequences

■ An **infinite-length** discrete-time signal x[n] is defined for all  $n \in \mathbb{Z}$ , i.e.,  $-\infty < n < \infty$ 



■ A finite-length discrete-time signal x[n] is defined only for a finite range of  $N_1 \leq n \leq N_2$ 



Important: a finite-length signal is  $\underline{\mathsf{undefined}}$  for  $n < N_1$  and  $n > N_2$ 

## Windowing

■ Converts a longer signal into a shorter one

$$y[n] = egin{cases} x[n] & N_1 \leq n \leq N_2 \\ 0 & ext{otherwise} \end{cases}$$



## Zero Padding

- Converts a shorter signal into a longer one
- Say x[n] is defined for  $N_1 \le n \le N_2$

■ Given 
$$N_0 \le N_1 \le N_2 \le N_3$$
 
$$y[n] = \begin{cases} 0 & N_0 \le n < N_1 \\ x[n] & N_1 \le n \le N_2 \\ 0 & N_2 < n \le N_3 \end{cases}$$



A discrete-time signal is **periodic** if it repeats with period  $N \in \mathbb{Z}$ :

$$x[n+mN] = x[n] \quad \forall \, m \in \mathbb{Z}$$



Notes:

- lacktriangle The period N must be an integer
- A periodic signal is infinite in length

DEFINITION

A discrete-time signal is aperiodic if it is not periodic

#### Periodization

- Converts a finite-length signal into an infinite-length, periodic signal
- lacksquare Given finite-length x[n], replicate x[n] periodically with period N

$$y[n] = \sum_{m=-\infty}^{\infty} x[n-mN], \quad n \in \mathbb{Z}$$
  
=  $\cdots + x[n+2N] + x[n+N] + x[n] + x[n-N] + x[n-2N] + \cdots$ 





## Causal Signals

DEFINITION

A signal x[n] is **causal** if x[n] = 0 for all n < 0.



lacksquare A signal x[n] is **anti-causal** if x[n]=0 for all  $n\geq 0$ 



lacksquare A signal x[n] is **acausal** if it is not causal

## Even Signals

DEFINITION

A real signal x[n] is **even** if x[-n] = x[n]



lacktriangle Even signals are symmetrical around the point n=0

# Odd Signals

DEFINITION

A real signal x[n] is **odd** if x[-n] = -x[n]



lacktriangledown Odd signals are anti-symmetrical around the point n=0

## Signal Decomposition

- **Useful fact:** Every signal x[n] can be decomposed into the sum of its even part + its odd part
- Even part:  $e[n] = \frac{1}{2} \left( x[n] + x[-n] \right)$  (easy to verify that e[n] is even)
- Odd part:  $o[n] = \frac{1}{2} \left( x[n] x[-n] \right)$  (easy to verify that o[n] is odd)
- **Decomposition** x[n] = e[n] + o[n]
- Verify the decomposition:

$$\begin{array}{lcl} e[n] + o[n] & = & \frac{1}{2}(x[n] + x[-n]) + \frac{1}{2}(x[n] - x[-n]) \\ \\ & = & \frac{1}{2}(x[n] + x[-n] + x[n] - x[-n]) \\ \\ & = & \frac{1}{2}(2x[n]) = x[n] \quad \checkmark \end{array}$$













#### Discrete-Time Sinusoids

- Discrete-time sinusoids  $e^{j(\omega n + \phi)}$  have two counterintuitive properties
- lacksquare Both involve the frequency  $\omega$
- Weird property #1: Aliasing
- Weird property #2: Aperiodicity

# Property #1: Aliasing of Sinusoids

Consider two sinusoids with two different frequencies

$$\bullet$$
  $\omega$   $\Rightarrow$   $x_1[n] = e^{j(\omega n + \phi)}$ 

• 
$$\omega + 2\pi$$
  $\Rightarrow$   $x_2[n] = e^{j((\omega + 2\pi)n + \phi)}$ 

But note that

$$x_2[n] = e^{j((\omega + 2\pi)n + \phi)} = e^{j(\omega n + \phi) + j2\pi n} = e^{j(\omega n + \phi)} \ e^{j2\pi n} = e^{j(\omega n + \phi)} = x_1[n]$$

- The signals  $x_1$  and  $x_2$  have different frequencies but are **identical!**
- We say that  $x_1$  and  $x_2$  are aliases; this phenomenon is called aliasing
- Note: Any integer multiple of  $2\pi$  will do; try with  $x_3[n]=e^{j((\omega+2\pi m)n+\phi)}$ ,  $m\in\mathbb{Z}$

# Aliasing Example

 $x_1[n] = \cos\left(\frac{\pi}{6}n\right)$ 



 $x_2[n] = \cos\left(\frac{13\pi}{6}n\right) = \cos\left(\left(\frac{\pi}{6} + 2\pi\right)n\right)$ 



# Aliasing Example

 $x_1[n] = \cos\left(\frac{\pi}{6}n\right)$ 



#### Alias-Free Frequencies

Since

$$x_3[n] = e^{j(\omega + 2\pi m)n + \phi} = e^{j(\omega n + \phi)} = x_1[n] \quad \forall m \in \mathbb{Z}$$

the only frequencies that lead to unique (distinct) sinusoids lie in an interval of length  $2\pi$ 

- Convenient to interpret the frequency ω as an angle (then aliasing is handled automatically; more on this later)
- Two intervals are typically used in the signal processing literature (and in this course)
  - $0 \le \omega < 2\pi$
  - $-\pi < \omega \leq \pi$

## Which is higher in frequency?

 $\Box$  cos( $\pi$  n) or cos( $3\pi/2$ n)?

# Low and High Frequencies

$$e^{j(\omega n + \phi)}$$

**Low frequencies:**  $\omega$  close to 0 or  $2\pi$  rad

Ex:  $\cos\left(\frac{\pi}{10}n\right)$ 



■ High frequencies:  $\omega$  close to  $\pi$  or  $-\pi$  rad

Ex:  $\cos\left(\frac{9\pi}{10}n\right)$ 



## Increasing Frequency



## Decreasing Frequency



## Property #2: Periodicity of Sinusoids

- Consider  $x_1[n] = e^{j(\omega n + \phi)}$  with frequency  $\omega = \frac{2\pi k}{N}$ ,  $k, N \in \mathbb{Z}$  (harmonic frequency)
- It is easy to show that  $\underline{x_1}$  is periodic with period N, since

$$x_1[n+N] = e^{j(\omega(n+N)+\phi)} = e^{j(\omega n + \omega N + \phi)} = e^{j(\omega n + \phi)} \ e^{j(\omega N)} = e^{j(\omega n + \phi)} \ e^{j(\frac{2\pi k}{N}N)} = x_1[n] \ \checkmark$$

**Ex:**  $x_1[n] = \cos(\frac{2\pi 3}{16}n)$ , N = 16



■ Note:  $x_1$  is periodic with the (smaller) period of  $\frac{N}{k}$  when  $\frac{N}{k}$  is an integer

# Aperiodicity of Sinusoids

- Consider  $x_2[n] = e^{j(\omega n + \phi)}$  with frequency  $\omega \neq \frac{2\pi k}{N}$ ,  $k, N \in \mathbb{Z}$  (not harmonic frequency)
- Is  $x_2$  periodic?

$$x_2[n+N] = e^{j(\omega(n+N)+\phi)} = e^{j(\omega n + \omega N + \phi)} = e^{j(\omega n + \phi)} \ e^{j(\omega N)} \neq x_1[n] \quad \text{NO!}$$

**Ex**:  $x_2[n] = \cos(1.16 n)$ 



■ If its frequency  $\omega$  is not harmonic, then a sinusoid <u>oscillates</u> but is <u>not periodic!</u>

#### Harmonic Sinusoids

$$e^{j(\omega n + \phi)}$$

 Semi-amazing fact: The only periodic discrete-time sinusoids are those with harmonic frequencies

$$\omega = \frac{2\pi k}{N}, \quad k, N \in \mathbb{Z}$$

- Which means that
  - Most discrete-time sinusoids are not periodic!
  - The harmonic sinusoids are somehow magical (they play a starring role later in the DFT)

 $\cos(5/7 \pi n)$ 

 $\cos(\pi/5n)$ 

□ What are N and k?

- - N=14, k=5
  - $\cos(5/14*2\pi n)$
  - Repeats every N=14 samples
- $\cos(\pi/5n)$ 
  - N=10, k=1
  - $\cos(1/10*2\pi n)$
  - Repeats every N=10 samples

- - N=14, k=5
  - $\cos(5/14*2\pi n)$
  - Repeats every N=14 samples
- - N=10, k=1
  - $\cos(1/10*2\pi n)$
  - Repeats every N=10 samples
- $\cos(5/7\pi n) + \cos(\pi/5n) ?$

- $\cos(5/7\pi n) + \cos(\pi/5n) ?$ 
  - $N=SCM\{10,14\}=70$
  - $\cos(5/7*\pi n) + \cos(\pi/5n)$ 
    - $n=N=70 \rightarrow \cos(5/7*70\pi) + \cos(\pi/5*70) = \cos(25*2\pi) + \cos(7*2\pi)$

### Discrete-Time Systems



FINITION

A discrete-time system  ${\mathcal H}$  is a transformation (a rule or formula) that maps a discrete-time input signal x into a discrete-time output signal y

$$y = \mathcal{H}\{x\}$$
 $x \longrightarrow \mathcal{H} \longrightarrow y$ 

- Systems manipulate the information in signals
- Examples:
  - A speech recognition system converts acoustic waves of speech into text
  - A radar system transforms the received radar pulse to estimate the position and velocity of targets
  - A functional magnetic resonance imaging (fMRI) system transforms measurements of electron spin into voxel-by-voxel estimates of brain activity
  - A 30 day moving average smooths out the day-to-day variability in a stock price

## Signal Length and Systems



- Recall that there are two kinds of signals: infinite-length and finite-length
- Accordingly, we will consider two kinds of systems:
  - $oxed{1}$  Systems that transform an infinite-length-signal x into an infinite-length signal y
  - 2 Systems that transform a length-N signal x into a length-N signal y (Such systems can also be used to process periodic signals with period N)
- For generality, we will assume that the input and output signals are complex valued

### System Examples

- Identity
- Scaling
- Offset
- Square signal
- Shift
- Decimate
- Square time

$$y[n] = x[n] \quad \forall n$$

$$y[n] = 2x[n] \quad \forall n$$

$$y[n] = x[n] + 2 \quad \forall n$$

$$y[n] = (x[n])^2 \quad \forall n$$

$$y[n] = x[n+2] \quad \forall n$$

$$y[n] = x[2n] \quad \forall n$$

$$y[n] = x[n^2] \quad \forall n$$

# System Examples



■ Shift system  $(m \in \mathbb{Z} \text{ fixed})$ 

$$y[n] = x[n-m] \quad \forall n$$

Moving average (combines shift, sum, scale)

$$y[n] = \frac{1}{2}(x[n] + x[n-1]) \quad \forall n$$

Recursive average

$$y[n] = x[n] + \alpha y[n-1] \quad \forall n$$

## System Properties

- Memoryless
- Linearity
- □ Time Invariance
- Causality
- BIBO Stability

#### Memoryless



- y[n] depends only on x[n]
- □ Examples:
- □ Ideal delay system (or shift system):
  - y[n]=x[n-m] memoryless?
- Square system:
  - $y[n]=(x[n])^2$  memoryless?

A system  $\mathcal{H}$  is (zero-state) **linear** if it satisfies the following two properties:

Scaling

$$\mathcal{H}\{\alpha\,x\} = \alpha\,\mathcal{H}\{x\} \quad \forall \ \alpha \in \mathbb{C}$$

$$x \longrightarrow \boxed{\mathcal{H}} \longrightarrow y \qquad \alpha\,x \longrightarrow \boxed{\mathcal{H}} \longrightarrow \alpha\,y$$

2 Additivity

If 
$$y_1 = \mathcal{H}\{x_1\}$$
 and  $y_2 = \mathcal{H}\{x_2\}$  then 
$$\mathcal{H}\{x_1 + x_2\} = y_1 + y_2$$

$$x_1 \longrightarrow \mathcal{H} \longrightarrow y_1 \qquad x_2 \longrightarrow \mathcal{H} \longrightarrow y_2$$

$$x_1 + x_2 \longrightarrow \mathcal{H} \longrightarrow y_1 + y_2$$

## Proving Linearity

- A system that is not linear is called nonlinear
- To prove that a system is linear, you must prove rigorously that it has both the scaling and additivity properties for arbitrary input signals
- To prove that a system is nonlinear, it is sufficient to exhibit a counterexample

## Linearity Example: Moving Average

$$x[n] \longrightarrow \mathcal{H} \longrightarrow y[n] = \frac{1}{2}(x[n] + x[n-1])$$

- Scaling: (Strategy to prove Scale input x by  $\alpha \in \mathbb{C}$ , compute output y via the formula at top, and verify that it is scaled as well)
  - Let

$$x'[n] = \alpha x[n], \quad \alpha \in \mathbb{C}$$

- Let y' denote the output when x' is input (that is,  $y' = \mathcal{H}\{x'\}$ )
- Then

$$y'[n] \ = \ \frac{1}{2}(x'[n] + x'[n-1]) \ = \ \frac{1}{2}(\alpha x[n] + \alpha x[n-1]) \ = \ \alpha \left(\frac{1}{2}(x[n] + x[n-1])\right) \ = \ \alpha y[n] \ \checkmark$$

### Linearity Example: Moving Average

$$x[n] \longrightarrow \mathcal{H} \longrightarrow y[n] = \frac{1}{2}(x[n] + x[n-1])$$

- Additivity: (Strategy to prove Input two signals into the system and verify that the output equals the sum of the respective outputs)
  - Let

$$x'[n] = x_1[n] + x_2[n]$$

- Let  $y'/y_1/y_2$  denote the output when  $x'/x_1/x_2$  is input
- Then

$$y'[n] = \frac{1}{2}(x'[n] + x'[n-1]) = \frac{1}{2}(\{x_1[n] + x_2[n]\} + \{x_1[n-1] + x_2[n-1]\})$$

$$= \frac{1}{2}(x_1[n] + x_1[n-1]) + \frac{1}{2}(x_2[n] + x_2[n-1]) = y_1[n] + y_2[n] \checkmark$$

#### Example: Squaring is Nonlinear

$$x[n] \longrightarrow \mathcal{H} \longrightarrow y[n] = (x[n])^2$$

- Additivity: Input two signals into the system and see what happens
  - Let

$$y_1[n] = (x_1[n])^2, \qquad y_2[n] = (x_2[n])^2$$

Set

$$x'[n] = x_1[n] + x_2[n]$$

Then

$$y'[n] = (x'[n])^2 = (x_1[n] + x_2[n])^2 = (x_1[n])^2 + 2x_1[n]x_2[n] + (x_2[n])^2 \neq y_1[n] + y_2[n]$$

Nonlinear!

#### Time-Invariant Systems

A system  ${\mathcal H}$  processing infinite-length signals is **time-invariant** (shift-invariant) if a time shift of the input signal creates a corresponding time shift in the output signal

- Intuition: A time-invariant system behaves the same no matter when the input is applied
- A system that is not time-invariant is called time-varying

### Example: Moving Average

$$x[n] \longrightarrow \mathcal{H} \longrightarrow y[n] = \frac{1}{2}(x[n] + x[n-1])$$

Let

$$x'[n] = x[n-q], \quad q \in \mathbb{Z}$$

- lacksquare Let y' denote the output when x' is input (that is,  $y'=\mathcal{H}\{x'\}$ )
- Then

$$y'[n] = \frac{1}{2}(x'[n] + x'[n-1]) = \frac{1}{2}(x[n-q] + x[n-q-1]) = y[n-q]$$

#### Example: Decimation

$$x[n] \longrightarrow \mathcal{H} \longrightarrow y[n] = x[2n]$$

- This system is time-varying; demonstrate with a counter-example
- Let

$$x'[n] = x[n-1]$$

- Let y' denote the output when x' is input (that is,  $y' = \mathcal{H}\{x'\}$ )
- Then

$$y'[n] = x'[2n] = x[2n-1] \neq x[2(n-1)] = y[n-1]$$

#### Causal Systems

DEFINITION

A system  $\mathcal{H}$  is **causal** if the output y[n] at time n depends only the input x[m] for times  $m \leq n$ . In words, causal systems do not look into the future

- □ Forward difference system:
  - y[n]=x[n+1]-x[n] causal?
- Backward difference system:
  - y[n]=x[n]-x[n-1] causal?

- BIBO Stability
  - Bounded-input bounded-output Stability

An LTI system is **bounded-input bounded-output (BIBO) stable** if a bounded input x always produces a bounded output y

bounded  $x \longrightarrow h \longrightarrow \text{bounded } y$ 

■ Bounded input and output means  $\|x\|_{\infty} < \infty$  and  $\|y\|_{\infty} < \infty$ , or that there exist constants  $A, C < \infty$  such that |x[n]| < A and |y[n]| < C for all n



#### Examples

- □ Causal? Linear? Time-invariant? Memoryless? BIBO Stable?
- □ Time Shift:

• 
$$y[n] = x[n-m]$$

□ Accumulator:

$$y[n] = \sum_{k=-\infty}^{n} x[k]$$

□ Compressor (M>1):

$$y[n] = x[Mn]$$

#### Big Ideas

- Discrete Time Signals
  - Unit impulse, unit step, exponential, sinusoids, complex sinusoids
  - Can be finite length, infinite length
  - Properties
    - Even, odd, causal
    - Periodicity and aliasing
      - Discrete frequency bounded!
- Discrete Time Systems
  - Transform one signal to another
- $y = \mathcal{H}\{x\}$   $x \longrightarrow \mathcal{H} \longrightarrow y$

- Properties
  - Linear, Time-invariance, memoryless, causality, BIBO stability

#### Admin

- □ Enroll in Piazza site:
  - piazza.com/upenn/spring2017/ese531
- □ HW 1 out Thursday