ESE 531: Digital Signal Processing

Lec 20: April 11, 2017

Discrete Fourier Transform, Pt 2

Today

- □ Review: Discrete Fourier Transform (DFT)
- DFT Properties
 - Duality
 - Circular Shift
- Circular Convolution
- □ Fast Convolution Methods

Discrete Fourier Transform

□ The DFT

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] W_N^{-kn} \qquad \text{Inverse DFT, synthesis}$$

$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn} \qquad \text{DFT, analysis}$$

□ It is understood that,

$$x[n] = 0$$
 outside $0 \le n \le N-1$
 $X[k] = 0$ outside $0 \le k \le N-1$

DFT vs. DTFT

- □ For finite sequences of length N:
 - The N-point DFT of x[n] is:

$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn} = \sum_{n=0}^{N-1} x[n] e^{-j(2\pi/N)nk} \qquad 0 \le k \le N-1$$

• The DTFT of x[n] is:

$$X(e^{j\omega}) = \sum_{n=0}^{N-1} x[n]e^{-j\omega n} - \infty < \omega < \infty$$

DFT vs. DTFT

■ The DFT are samples of the DTFT at N equally spaced frequencies

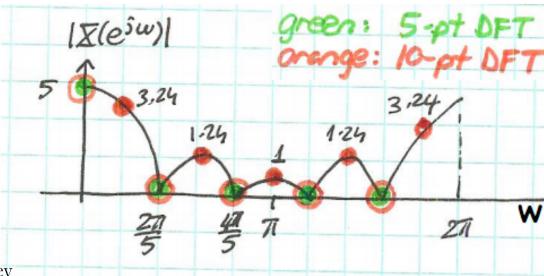
$$X[k] = X(e^{j\omega})|_{\omega = k\frac{2\pi}{N}} \quad 0 \le k \le N - 1$$

DFT vs DTFT

Back to example

$$X[k] = \sum_{n=0}^{4} W_{10}^{nk}$$

$$= e^{-j\frac{4\pi}{10}k} \frac{\sin(\frac{\pi}{2}k)}{\sin(\frac{\pi}{10}k)}$$



Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Properties of the DFT

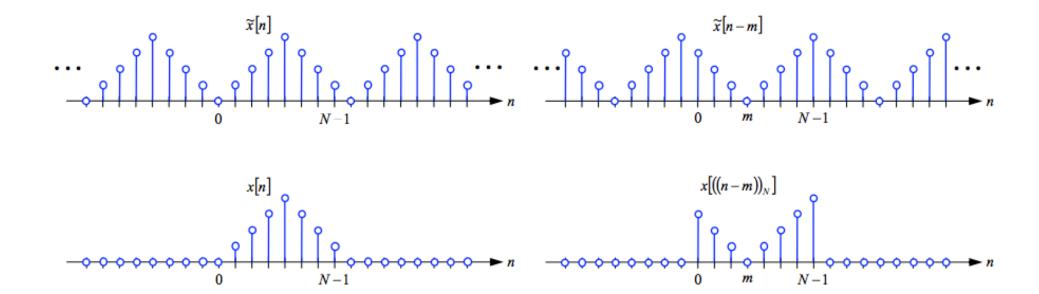
- Properties of DFT inherited from DFS
- Linearity

$$\alpha_1 x_1[n] + \alpha_2 x_2[n] \leftrightarrow \alpha_1 X_1[k] + \alpha_2 X_2[k]$$

Circular Time Shift

$$x[((n-m))_N] \leftrightarrow X[k]e^{-j(2\pi/N)km} = X[k]W_N^{km}$$

Circular Shift



Properties of DFT

Circular frequency shift

$$x[n]e^{j(2\pi/N)nl} = x[n]W_N^{-nl} \leftrightarrow X[((k-l))_N]$$

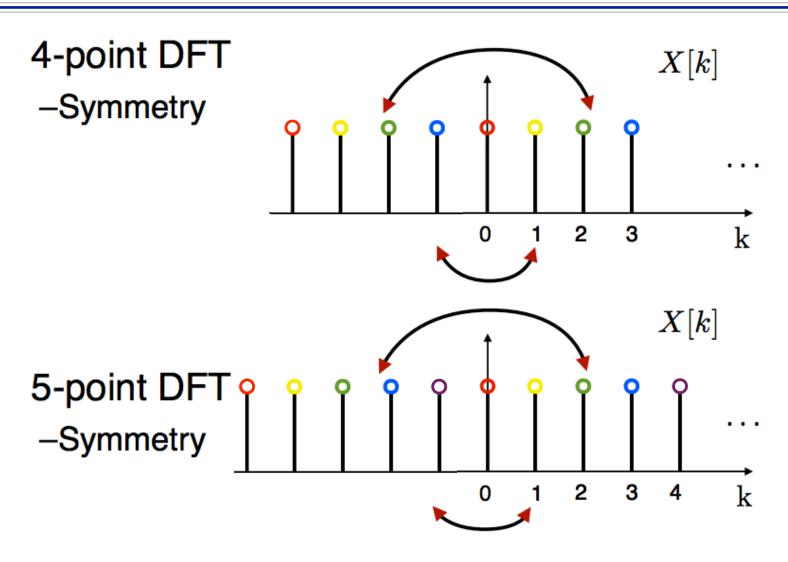
Complex Conjugation

$$x^*[n] \leftrightarrow X^*[((-k))_N]$$

Conjugate Symmetry for Real Signals

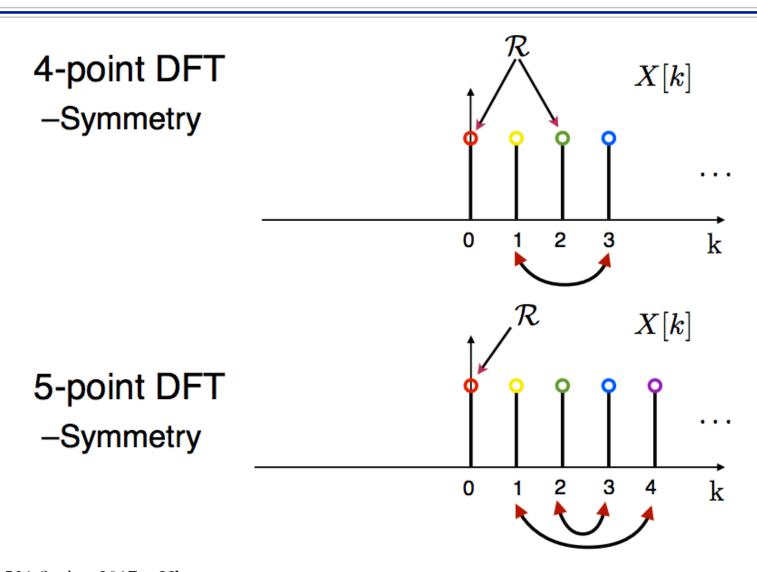
$$x[n] = x^*[n] \leftrightarrow X[k] = X^*[((-k))_N]$$

Example: Conjugate Symmetry



Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

$$x[n] = x^*[n] \leftrightarrow X[k] = X^*[((-k))_N]$$



Properties of the DFS/DFT

Discrete Fourier Series			Discrete Fourier Transform		
Property	N-periodic sequence	N-periodic DFS	Property	N-point sequence	N-point DFT
	$\widetilde{x}[n]$ $\widetilde{x}_1[n], \ \widetilde{x}_2[n]$	$\widetilde{X}[k]$ $\widetilde{X}_1[k],\ \widetilde{X}_2[k]$		$x[n]$ $x_1[n], x_2[n]$	$X[k]$ $X_1[k], X_2[k]$
Linearity	$a\widetilde{x}_1[n] + b\widetilde{x}_2[n]$	$a\widetilde{X}_1[k] + b\widetilde{X}_2[k]$	Linearity	$ax_1[n] + bx_2[n]$	$aX_1[k] + bX_2[k]$
Duality	$\widetilde{X}[n]$	$N\widetilde{x}[-k]$	Duality	X[n]	$N x[((-k))_N]$
Time Shift	$\widetilde{x}[n-m]$	$W_{N}^{km}\widetilde{X}ig[kig]$	Circular Time Shift	$x[((n-m))_N]$	$W_{N}^{km}Xig[kig]$
Frequency Shift	$W_N^{-ln}\widetilde{x}[n]$	$\widetilde{X}[k-l]$	Circular Frequency Shift	$W_N^{-ln}x[n]$	$X\big[\big(\big(k-l\big)\big)_N\big]$
Periodic Convolution	$\sum_{m=0}^{N-1} \widetilde{x}_1 [m] \widetilde{x}_2 [n-m]$	$\widetilde{X}_1[k]\widetilde{X}_2[k]$	Circular Convolution	$\sum_{m=0}^{N-1} x_1 [m] x_2 [((n-m))_N]$	$X_1[k]X_2[k]$
Multiplication	$\widetilde{x}_1[n]\widetilde{x}_2[n]$	$\frac{1}{N}\sum_{l=0}^{N-1}\widetilde{X}_1[l]\widetilde{X}_2[k-l]$	Multiplication	$x_1[n]x_2[n]$	$\frac{1}{N} \sum_{l=0}^{N-1} X_1[l] X_2[((k-l))_N]$
Complex Conjugation	$\widetilde{x}^*[n]$	$\widetilde{X}^*[-k]$	Complex Conjugation	$x^*[n]$	$X^*[((-k))_N]$

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Properties (Continued)

Time- Reversal and Complex Conjugation	$\widetilde{x}^*[-n]$	$\widetilde{X}^*[k]$	Time- Reversal and Complex Conjugation	$x^*[((-n))_N]$	$X^*[k]$
Real Part	$\operatorname{Re}\{\widetilde{x}[n]\}$	$\widetilde{X}_{ep}[k] = \frac{1}{2} \left(\widetilde{X}[k] + \widetilde{X}^*[-k] \right)$	Real Part	$\operatorname{Re}\{x[n]\}$	$X_{ep}[k] = \frac{1}{2}(X[k] + X^*[((-k))_N])$
Imaginary Part	$j\operatorname{Im}\{\widetilde{x}[n]\}$	$\widetilde{X}_{op}[k] = \frac{1}{2} \left(\widetilde{X}[k] - \widetilde{X}^*[-k] \right)$	Imaginary Part	$j\operatorname{Im}\{x[n]\}$	$X_{op}[k] = \frac{1}{2}(X[k] - X^*[((-k))_N])$
Even Part	$\widetilde{x}_{ep}[n] = \frac{1}{2} (\widetilde{x}[n] + \widetilde{x}^*[-n])$	$\operatorname{Re}igl\{\widetilde{X}[k]igr\}$	Even Part	$x_{ep}[n] = \frac{1}{2}(x[n] + x^*[((-n))_N])$	$\operatorname{Re}\{X[k]\}$
Odd Part	$\widetilde{x}_{op}[n] = \frac{1}{2} (\widetilde{x}[n] - \widetilde{x}^*[-n])$	$j\operatorname{Im}\!\left\{\!\widetilde{X}\!\left[k ight. ight]\! ight\}$	Odd Part	$x_{op}[n] = \frac{1}{2}(x[n] - x^*[((-n))_N])$	$j\operatorname{Im}\{Xig[kig]\}$
Symmetry for Real Sequence	$\widetilde{x}[n] = \widetilde{x}^*[n]$	$\widetilde{X}[k] = \widetilde{X}^*[-k]$ $\begin{cases} \operatorname{Re}\{\widetilde{X}[k]\} = \operatorname{Re}\{\widetilde{X}[-k]\} \\ \operatorname{Im}\{\widetilde{X}[k]\} = -\operatorname{Im}\{\widetilde{X}[-k]\} \end{cases}$ $\begin{cases} \widetilde{X}[k] = \widetilde{X}[-k] \\ \angle \widetilde{X}[k] = -\angle \widetilde{X}[-k] \end{cases}$	Symmetry for Real Sequence	$x[n] = x^*[n]$	$X[k] = X^*[((-k))_N]$ $\begin{cases} \operatorname{Re}\{X[k]\} = \operatorname{Re}\{X[((-k))_N]\} \\ \operatorname{Im}\{X[k]\} = -\operatorname{Im}\{X[((-k))_N]\} \end{cases}$ $\begin{cases} X[k]] = X[((-k))_N] \\ \angle X[k] = -\angle X[((-k))_N] \end{cases}$
Parseval's Identity	$\sum_{n=0}^{N-1} \widetilde{x}_1[n] \widetilde{x}_2^*[n] = \frac{1}{N} \sum_{k=0}^{N-1} \widetilde{X}_1[k] \widetilde{X}_2^*[k]$ $\sum_{n=0}^{N-1} \widetilde{x}[n] ^2 = \frac{1}{N} \sum_{k=0}^{N-1} \widetilde{X}[k] ^2$		Parseval's Identity	$\sum_{n=0}^{N-1} x_1[n] x_2^*[n] = \frac{1}{N} \sum_{k=0}^{N-1} X_1[k] X_2^*[k]$ $\sum_{n=0}^{N-1} x[n] ^2 = \frac{1}{N} \sum_{k=0}^{N-1} X[k] ^2$	

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Duality

If
$$x \xrightarrow{DFT} X$$
, then $\{X[n]\}_{n=0}^{N-1} \xrightarrow{DFT} N \{x[((-k))_N]\}_{k=0}^{N-1}$

Duality

If
$$x \xrightarrow{DFT} X$$
, then $\{X[n]\}_{n=0}^{N-1} \xrightarrow{DFT} N \{x[((-k))_N]\}_{k=0}^{N-1}$

$$\tilde{x}[n] \stackrel{\mathcal{DFS}}{\longleftrightarrow} \tilde{X}[k],$$

$$\tilde{X}[n] \stackrel{\mathcal{DFS}}{\longleftrightarrow} N\tilde{x}[-k].$$

Proof of Duality

DFT of
$$\{x[n]\}_{n=0}^{N-1}$$
 is $X[k] = \sum_{p=0}^{N-1} x[p] e^{-j\frac{2\pi}{N}kp};$ $k \le 0 \le N-1$

DFT of $\{X[n]\}_{n=0}^{N-1}$ is $\sum_{n=0}^{N-1} \sum_{p=0}^{N-1} x[p] e^{-j\frac{2\pi}{N}pn} e^{-j\frac{2\pi}{N}kn},$ $k \le 0 \le N-1$

$$= \sum_{p=0}^{N-1} x[p] \sum_{n=0}^{N-1} e^{-j\frac{2\pi}{N}(p+k)n}$$

$$= \sum_{n=0}^{N-1} x[n] \sum_{n=0}^{N-1} x[n] \sum_{n=0}^{N-1} x[n]$$

$$= \sum_{n=0}^{N-1$$

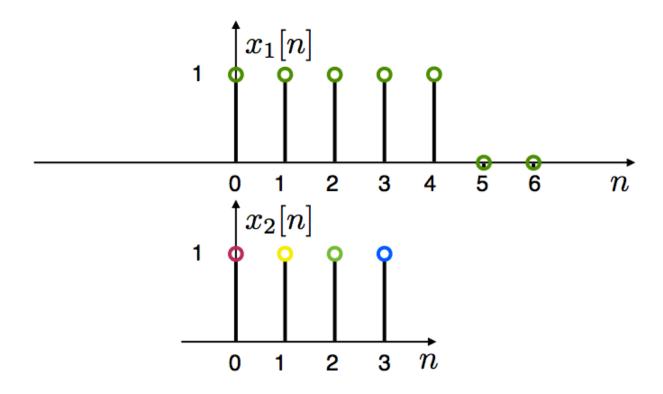
Circular Convolution

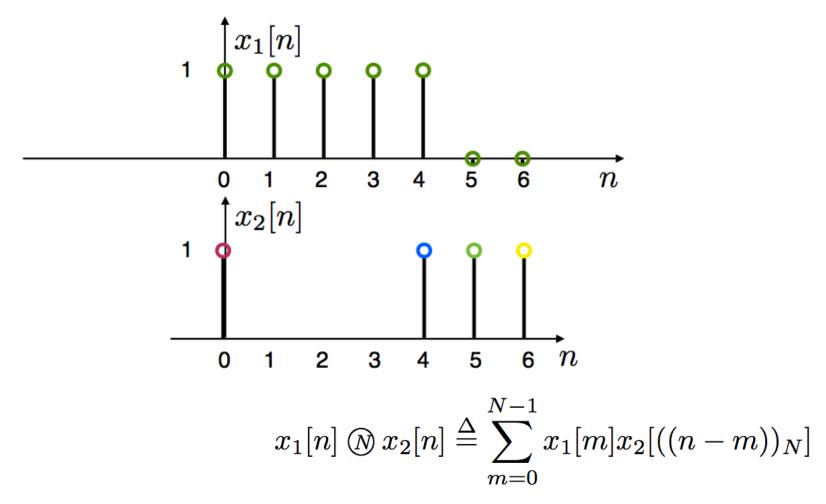
Circular Convolution:

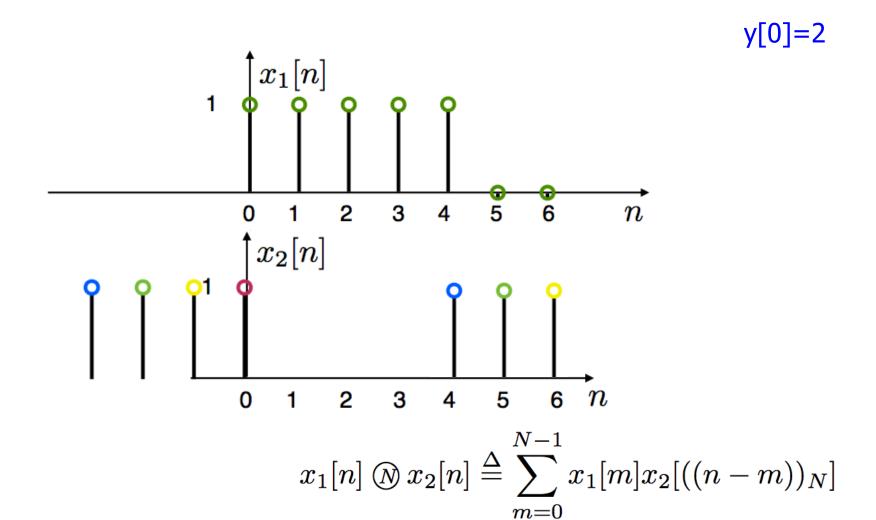
For two signals of length N

Note: Circular convolution is commutative

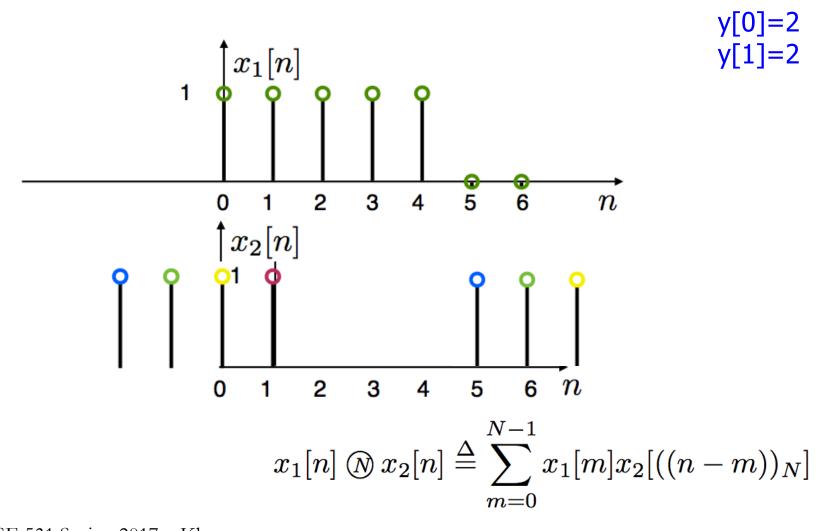
$$x_2[n] \otimes x_1[n] = x_1[n] \otimes x_2[n]$$



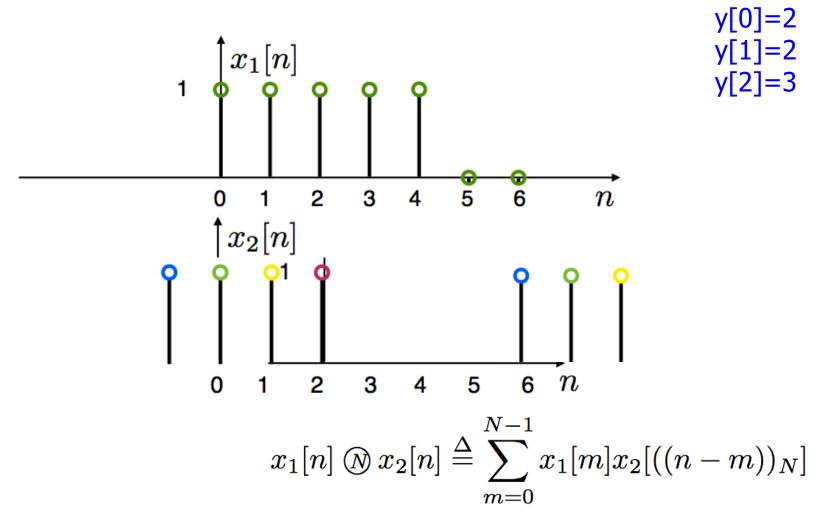


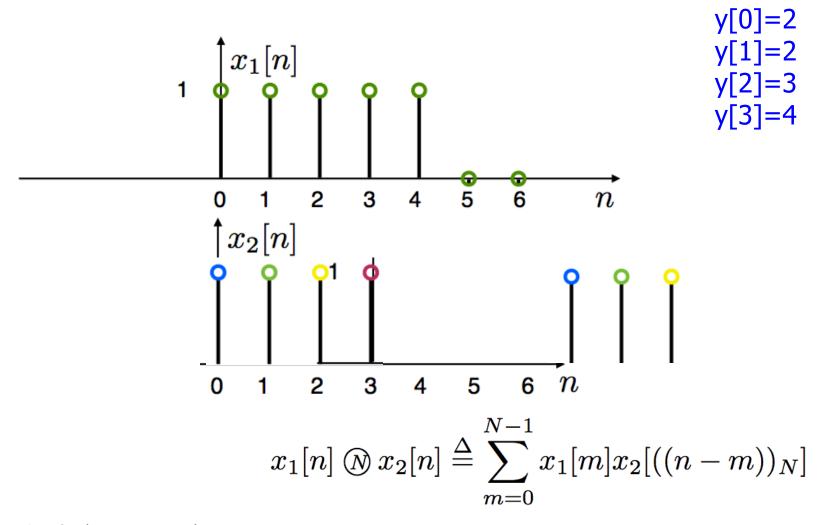


Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

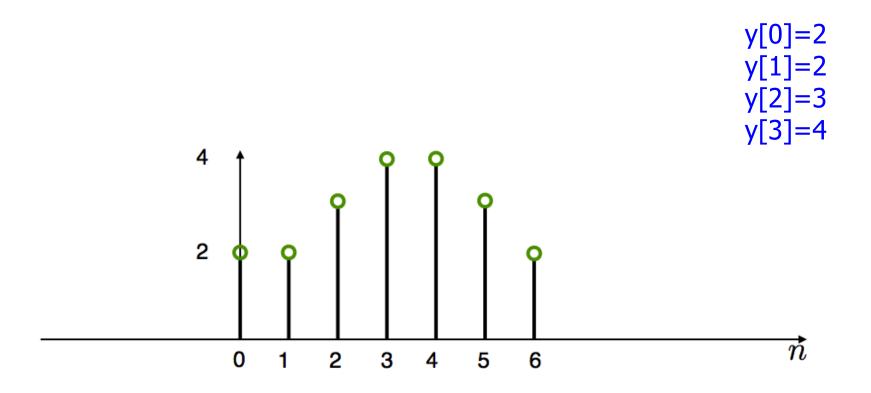


Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley





Result



Circular Convolution

 \blacksquare For $x_1[n]$ and $x_2[n]$ with length N

$$x_1[n] \textcircled{n} x_2[n] \leftrightarrow X_1[k] \cdot X_2[k]$$

Very useful!! (for linear convolutions with DFT)

Multiplication

 \square For $x_1[n]$ and $x_2[n]$ with length N

$$x_1[n] \cdot x_2[n] \leftrightarrow \frac{1}{N} X_1[k] \textcircled{N} X_2[k]$$

Linear Convolution

- □ Next....
 - Using DFT, circular convolution is easy
 - Matrix multiplication... more later
 - But, linear convolution is useful, not circular
 - So, show how to perform linear convolution with circular convolution
 - Use DFT to do linear convolution (via circular convolution)

Linear Convolution

■ We start with two non-periodic sequences:

$$x[n]$$
 $0 \le n \le L-1$
 $h[n]$ $0 \le n \le P-1$

■ E.g. x[n] is a signal and h[n] a filter's impulse response

Linear Convolution

■ We start with two non-periodic sequences:

$$x[n]$$
 $0 \le n \le L-1$
 $h[n]$ $0 \le n \le P-1$

- E.g. x[n] is a signal and h[n] a filter's impulse response
- We want to compute the linear convolution:

$$y[n] = x[n] * h[n] = \sum_{m=0}^{L-1} x[m]h[n-m]$$

• y[n] is nonzero for $0 \le n \le L+P-2$ with length M=L+P-1

Requires LP multiplications

Linear Convolution via Circular Convolution

Zero-pad x[n] by P-1 zeros

$$x_{\mathrm{zp}}[n] = \left\{ egin{array}{ll} x[n] & 0 \leq n \leq L-1 \\ 0 & L \leq n \leq L+P-2 \end{array}
ight.$$

Zero-pad h[n] by L-1 zeros

$$h_{\mathrm{zp}}[n] = \begin{cases} h[n] & 0 \le n \le P - 1 \\ 0 & P \le n \le L + P - 2 \end{cases}$$

□ Now, both sequences are length M=L+P-1

Linear Convolution via Circular Convolution

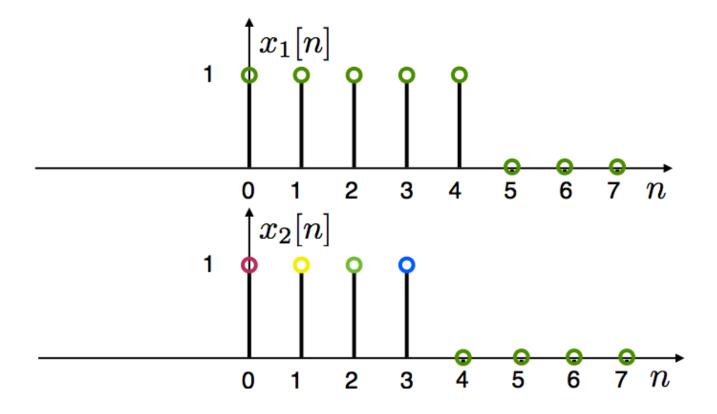
- □ Now, both sequences are length M=L+P-1
- We can now computer the linear convolution using a circular one with length M=L+P-1

Linear convolution via circular

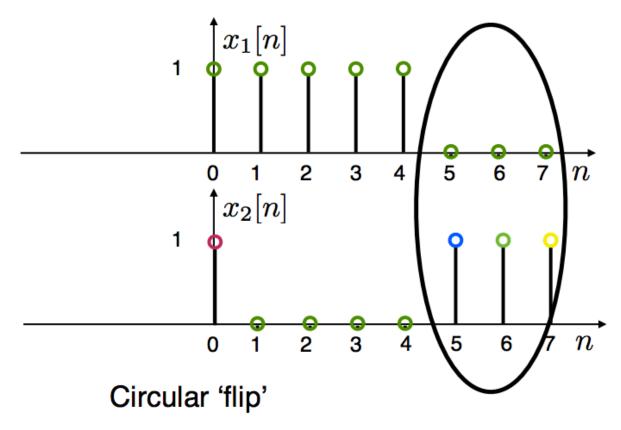
$$y[n] = x[n] * y[n] = \begin{cases} x_{zp}[n] \textcircled{n} h_{zp}[n] & 0 \le n \le M - 1 \\ 0 & \text{otherwise} \end{cases}$$



$$M = L + P - 1 = 8$$



$$M = L + P - 1 = 8$$



$$M = L + P - 1 = 8$$

$$y[n] = x_1[n] \otimes x_2[n] = x_1[n] * x_2[n]$$

Linear Convolution with DFT

■ In practice we can implement a circulant convolution using the DFT property:

$$\begin{split} x[n]*h[n] &= x_{\mathrm{zp}}[n] \textcircled{n} \ h_{\mathrm{zp}}[n] \\ &= \mathcal{DFT}^{-1} \left\{ \mathcal{DFT} \left\{ x_{\mathrm{zp}}[n] \right\} \cdot \mathcal{DFT} \left\{ h_{\mathrm{zp}}[n] \right\} \right\} \\ \text{for 0 } \leq n \leq \text{M-1, M=L+P-1} \end{split}$$

Linear Convolution with DFT

□ In practice we can implement a circulant convolution using the DFT property:

$$\begin{split} x[n]*h[n] &= x_{\mathrm{zp}}[n] \textcircled{n} \ h_{\mathrm{zp}}[n] \\ &= \mathcal{DFT}^{-1} \left\{ \mathcal{DFT} \left\{ x_{\mathrm{zp}}[n] \right\} \cdot \mathcal{DFT} \left\{ h_{\mathrm{zp}}[n] \right\} \right\} \\ \text{for 0 } \leq n \leq \text{M-1, M=L+P-1} \end{split}$$

- Advantage: DFT can be computed with Nlog₂N complexity (FFT algorithm later!)
- Drawback: Must wait for all the samples -- huge delay -- incompatible with real-time filtering

Block Convolution

□ Problem:

- An input signal x[n], has very long length (could be considered infinite)
- An impulse response h[n] has length P
- We want to take advantage of DFT/FFT and compute convolutions in blocks that are shorter than the signal

Approach:

- Break the signal into small blocks
- Compute convolutions
- Combine the results

Block Convolution

Example: h[n] Impulse response, Length P=6 **PPPPPP** x[n] Input Signal, Length P=33 y[n] Output Signal, Length P=38

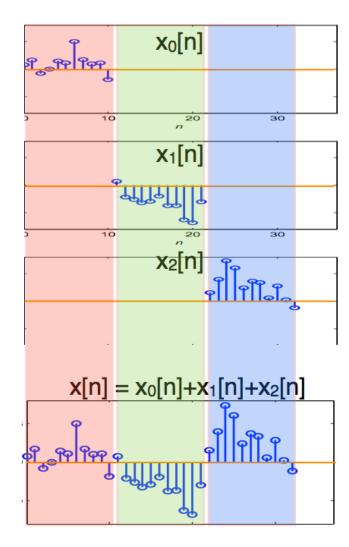
Decompose into non-overlapping segments

$$x_r[n] = \begin{cases} x[n] & rL \le n < (r+1)L \\ 0 & \text{otherwise} \end{cases}$$

□ The input signal is the sum of segments

$$x[n] = \sum_{r=0}^{\infty} x_r[n]$$

Example



$$x[n] = \sum_{r=0}^{\infty} x_r[n]$$

The output is:

$$y[n] = x[n] * h[n] = \sum_{r=0}^{\infty} x_r[n] * h[n]$$

- Each output segment $x_r[n]*h[n]$ is length N=L+P-1
 - h[n] has length P
 - $x_r[n]$ has length L

- We can compute $x_r[n]*h[n]$ using linear convolution
- Using the DFT:
 - \blacksquare Zero-pad $x_r[n]$ to length N
 - Zero-pad h[n] to length N and compute $DFT_N\{h_{zp}[n]\}$
 - Only need to do once: WHY?

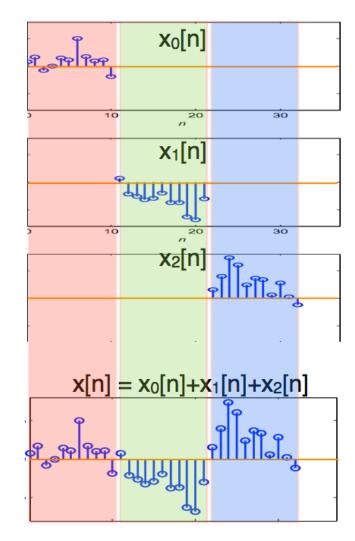
- We can compute $x_r/n/*h/n/n$ using linear convolution
- Using the DFT:
 - \blacksquare Zero-pad $x_r[n]$ to length N
 - Zero-pad h[n] to length N and compute $DFT_N\{h_{zp}[n]\}$
 - Only need to do once: WHY?
 - Compute:

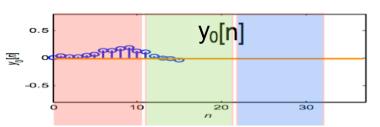
$$x_r[n] * h[n] = DFT^{-1} \{DFT\{x_{r,zp}[n]\} \cdot DFT\{h_{zp}[n]\}\}$$

- □ Results are of length N=L+P-1
 - Neighboring results overlap by P-1
 - Add overlaps to get final sequence

Example of Overlap-Add

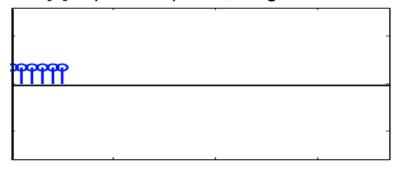
L+P-1=16





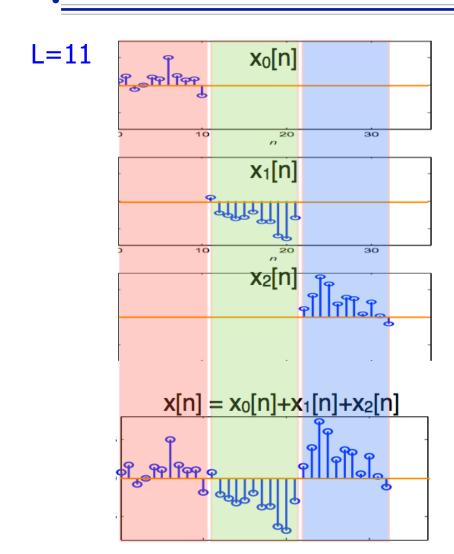
Example:

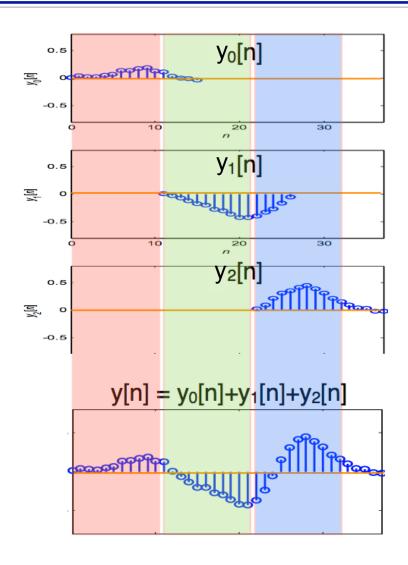
h[n] Impulse response, Length P=6



Example of Overlap-Add

L+P-1=16





Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

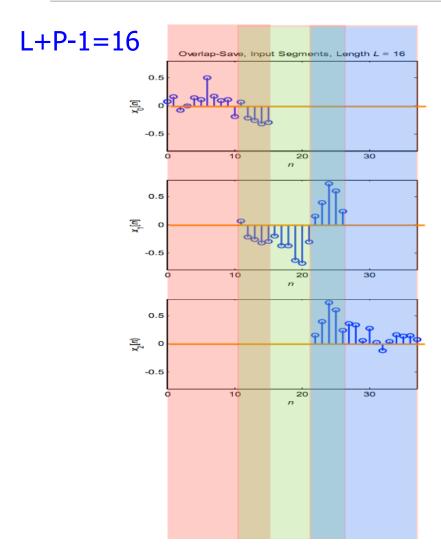
Overlap-Save Method

- □ Basic idea:
- □ Split input into (P-1) overlapping segments with length L+P-1

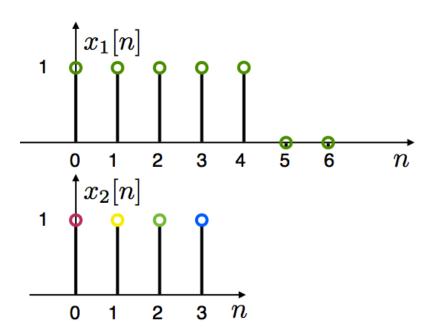
$$x_r[n] = \begin{cases} x[n] & rL \le n < (r+1)L + P \\ 0 & \text{otherwise} \end{cases}$$

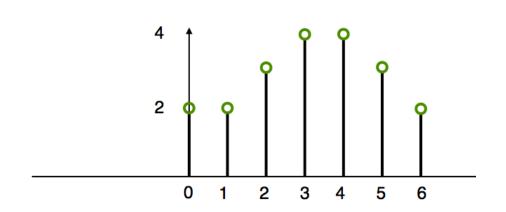
■ Perform circular convolution in each segment, and keep the L sample portion which is a valid linear convolution

Example of Overlap-Save



Recall Circular Convolution Sum

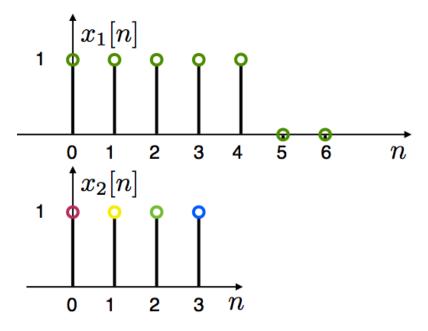


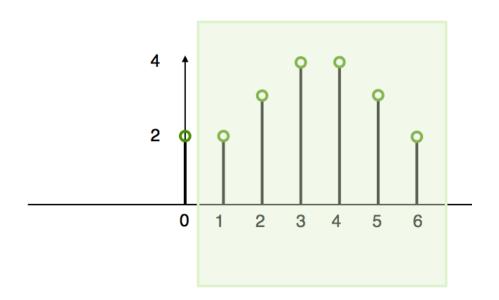


$$x_1[n] \textcircled{N} x_2[n] \stackrel{\Delta}{=} \sum_{m=0}^{N-1} x_1[m] x_2[((n-m))_N]$$

Recall Circular Convolution Sum

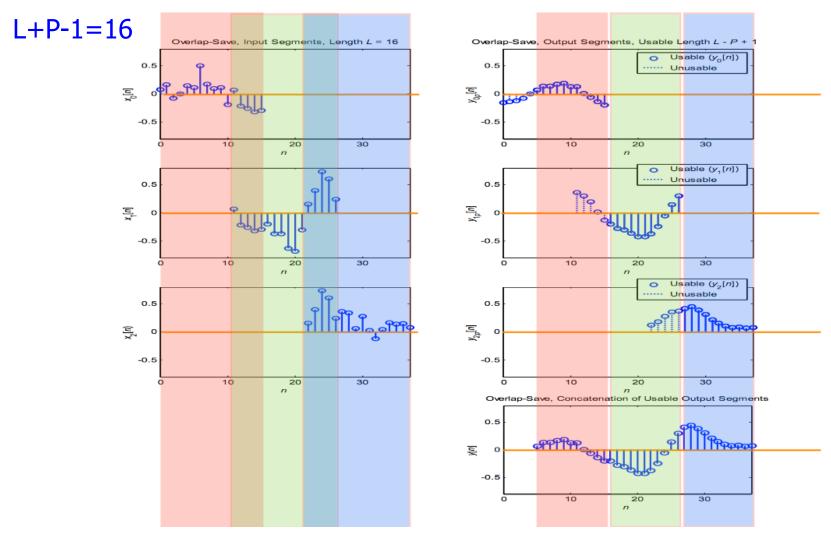
Valid linear convolution



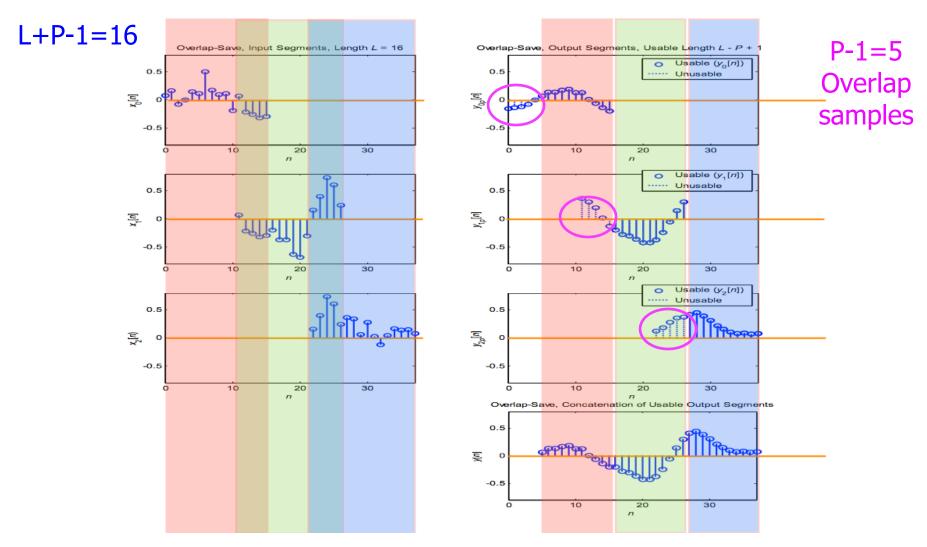


$$x_1[n] ext{ } ext{ } ext{ } x_2[n] ext{ } ext{$$

Example of Overlap-Save

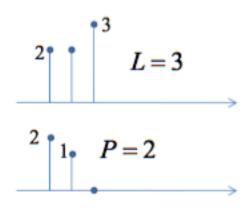


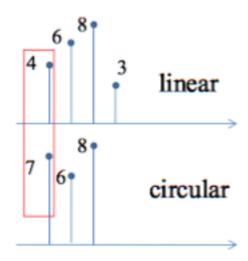
Example of Overlap-Save



Circular to Linear Convolution

An L-point sequence circularly convolved with a Ppoint sequence (with L - P zeros padded, P < L)
gives an L-point result with the first P - 1 values
incorrect and the next L - P + 1 the correct linear
convolution result.





Big Ideas

- Discrete Fourier Transform (DFT)
 - For finite signals assumed to be zero outside of defined length
 - N-point DFT is sampled DTFT at N points
 - Useful properties allow easier linear convolution
- DFT Properties
 - Inherited from DFS, but circular operations!
- □ Fast Convolution Methods
 - Use circular convolution (i.e DFT) to perform fast linear convolution
 - Overlap-Add, Overlap-Save

Admin

- Project
 - Work in groups of up to 2
 - Can work alone if you want
 - Use Piazza to find partners
 - Report your groups to me by midnight
 - taniak@seas.upenn.edu