

Dee	montion	Continu	(h. a		
Pro	perues (Continu	ea)		
Time- Reversal and Complex Conjugation	$\bar{x}^*[-n]$	$\tilde{X}^*[k]$	Time- Reversal and Complex Conjugation	$x'[((-n))_x]$	X'[k]
Real Part	$\operatorname{Re}\{\hat{x}[n]\}$	$\widetilde{X}_{cp}[k] = \frac{1}{2} \left(\widetilde{X}[k] + \widetilde{X}^*[-k] \right)$	Real Part	Re[x[n]]	$\boldsymbol{X}_{\sigma}[k] \!=\! \frac{1}{2} \left(\boldsymbol{X}[k] \!+\! \boldsymbol{X}^*[((-k))_{\boldsymbol{X}}] \right)$
Imaginary Part	$j \operatorname{Im}\{\tilde{x}[n]\}$	$\widetilde{X}_{op}[k] = \frac{1}{2} \left(\widetilde{X}[k] - \widetilde{X}^*[-k] \right)$	Imaginary Part	$j \ln\{s[n]\}$	$X_{op}[k] = \frac{1}{2} \left(X[k] - X^*[((-k))_N] \right)$
Even Part	$\widetilde{x}_{o}[n] = \frac{1}{2} \left(\widetilde{x}[n] + \widetilde{x}^*[-n] \right)$	$Re{\overline{X}[k]}$	Even Part	$x_{ip}[n] = \frac{1}{2} \left(x[n] + x^* [((-n))_N] \right)$	$\operatorname{Re}\{X[k]\}$
Odd Part	$\widetilde{x}_{op}[n] = \frac{1}{2} \left(\widetilde{x}[n] - \widetilde{x}^*[-n] \right)$	$/ Im \{ \tilde{X}[k] \}$	Odd Part	$x_{ip}[n] = \frac{1}{2} \Big(x[n] - x^* \big[((-n))_X \big] \Big)$	$/\operatorname{Im}\{X[k]\}$
Symmetry for Real Sequence	$\tilde{x}[u] = \tilde{x}^*[u]$	$\begin{split} \widetilde{X}[k] &= \widetilde{X}^*[-k] \\ \left\{ \begin{array}{l} \operatorname{Re}[\widetilde{X}[k]] &= \operatorname{Re}[\widetilde{X}[-k]] \\ \operatorname{Im}[\widetilde{X}[k]] &= -\operatorname{Im}[\widetilde{X}[-k]] \\ \\ \left[\begin{array}{l} \widetilde{X}[k] &= \widetilde{X}[-k] \\ \\ \widetilde{X}[k] &= -\widetilde{X}[-k] \end{array} \right] \\ \end{array} \right. \end{split}$	Symmetry for Real Sequence	$x[n] = x^*[n]$	$\begin{split} & \boldsymbol{\chi}[k] = \boldsymbol{\chi}^* [((-k))_{\boldsymbol{\chi}}] \\ & \left[\begin{array}{c} \operatorname{Re} \{\boldsymbol{\chi}[k]\} = \operatorname{Re} \{\boldsymbol{\chi}[((-k))_{\boldsymbol{\chi}}]\} \\ \operatorname{Im} \{\boldsymbol{\chi}[k]\} = -\operatorname{Im} \{\boldsymbol{\chi}[((-k))_{\boldsymbol{\chi}}\}\} \\ & \left[\begin{array}{c} \boldsymbol{\chi}[k] = -\operatorname{Im} \{\boldsymbol{\chi}[((-k))_{\boldsymbol{\chi}}\} \\ \\ \boldsymbol{\zeta} \{k\} = -\boldsymbol{\zeta} \boldsymbol{\chi}[((-k))_{\boldsymbol{\chi}}] \end{array} \right] \end{split} \right] \end{split} $
Parseval's Identity	$\begin{split} \sum_{n=0}^{N-1} \widetilde{X}_n [n] \widetilde{Y}_1^r[n] &= \frac{1}{N} \sum_{k=0}^{N-1} \widetilde{X}_n[k] \widetilde{X}_1^r[k] \\ \\ \sum_{n=0}^{N-1} [\widetilde{x}[n]]^2 &= \frac{1}{N} \sum_{k=0}^{N-1} [\widetilde{X}[k]]^2 \end{split}$		Parseval's Identity	$\sum_{a=0}^{N-1} x_a [w] w_2^*[a] = \frac{1}{N} \sum_{a=0}^{N-1} X_a [k] X_2^*[k]$ $\sum_{a=0}^{N-1} x[a] ^2 = \frac{1}{N} \sum_{a=0}^{N-1} X[k] ^2$	

Linear Convolution

• We start with two non-periodic sequences:

 $x[n] \quad 0 \le n \le L - 1$

 $h[n] \quad 0 \le n \le P - 1$

E.g. x[n] is a signal and h[n] a filter's impulse response

