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Last Time 

!  Discrete Fourier Transform  
"  Linear convolution through circular  
"  Linear convolutions through DFT  

"  Overlap and add  
"  Overlap and save  

!  Today  
"  The Fast Fourier Transform  
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Circular Convolution 

!  Circular Convolution: 

For two signals of length N 
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Circular Convolution as Matrix Operation 

!  Circular Convolution 
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h[n]⊗ x[n]= h[((n−m))N ]
m=0

N−1

∑ x[m]
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Circular Convolution as Matrix Operation 

!  Circular Convolution 
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WN 
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Circular Convolution as Matrix Operation 

!  Diagonalize 

!  Right-Multiply  by WN 

!  Multiply both sides by x 
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Fast Fourier Transform Algorithms 

!  We are interested in efficient computing methods 
for the DFT and inverse DFT: 
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Reminder: Inverse DFT via DFT 

!  Recall that we can use the DFT to compute the 
inverse DFT: 

"  Hence, we can just focus on efficient computation of the 
DFT.  

!  Straightforward computation of an N-point DFT 
(or inverse DFT) requires N2 complex 
multiplications. 
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Computation Order 

!  Fast Fourier transform algorithms enable computation of 
an N-point DFT (or inverse DFT) with the order of 
just N· log2 N complex multiplications.  
"  This can represent a huge reduction in computational 

load, especially for large N. 
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Eigenfunction Properties 

!  Most FFT algorithms exploit the following 
properties of WN

kn: 
"  Conjugate Symmetry 

 

"  Periodicity in n and k 

"  Power 
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FFT Algorithms via Decimation 

!  Most FFT algorithms decompose the computation of a DFT 
into successively smaller DFT computations.  
"  Decimation-in-time algorithms decompose x[n] into successively 

smaller subsequences.  
"  Decimation-in-frequency algorithms decompose X[k] into 

successively smaller subsequences.  

!  We mostly discuss decimation-in-time algorithms today.  

!  Note: Assume length of x[n] is power of 2 (N = 2v). If not, 
zero-pad to closest power. 
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Decimation-in-Time FFT 

!  We start with the DFT 

!  Separate the sum into even and odd terms: 

"  These are two DFTs, each with half the number of 
samples (N/2) 
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Decimation-in-Time FFT 
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Decimation-in-Time FFT 
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samples 

samples 
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Decimation-in-Time FFT 
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Decimation-in-Time FFT 

17 
Penn ESE 531 Spring 2017 – Khanna 
Adapted from M. Lustig, EECS Berkeley 



Decimation-in-Time FFT 

!  So, 

!  The periodicity of G[k] and H[k] allows us to 
further simplify. For the first N/2 points we 
calculate G[k] and WN

kH[k], and then compute the 
sum 
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Decimation-in-Time FFT 

19 
Penn ESE 531 Spring 2017 – Khanna 
Adapted from M. Lustig, EECS Berkeley 



Decimation-in-Time FFT 
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!  We previously calculated G[k] and WN
kH[k].  

!  Now we only have to compute their difference to 
obtain the second half of the spectrum. No 
additional multiplies are required. 
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Decimation-in-Time FFT 
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Decimation-in-Time FFT 
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!  Note that the inputs have been reordered so that the 
outputs come out in their proper sequence.  

!  We can define a butterfly operation, e.g., the 
computation of X[0] and X[4] from G[0] and H[0]: 
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Decimation-in-Time FFT 
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!  Still O(N2) operations…. What should we do? 
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Decimation-in-Time FFT 
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!  We can use the same approach for each of the N/2 
point DFT’s. For the N = 8 case, the N/2 DFTs 
look like 
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Decimation-in-Time FFT 

!  At this point for the 8 sample DFT, we can replace 
the N/4 = 2 sample DFT’s with a single butterfly. 
The coefficient is 
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Decimation-in-Time FFT 

!  At this point for the 8 sample DFT, we can replace 
the N/4 = 2 sample DFT’s with a single butterfly. 
The coefficient is 
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Decimation-in-Time FFT 
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Decimation-in-Time FFT 
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!  In general, there are log2N stages of decimation-in-time.  
!  Each stage requires N/2 complex multiplications, some of 

which are trivial.  
!  The total number of complex multiplications is (N/2) log2N, 

or O(N log2N) 
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Decimation-in-Time FFT 
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!  In general, there are log2N stages of decimation-in-time.  
!  Each stage requires N/2 complex multiplications, some of 

which are trivial.  
!  The total number of complex multiplications is (N/2) log2N, 

or O(N log2N) 

!  The order of the input to the decimation-in-time FFT 
algorithm must be permuted.  
"  First stage: split into odd and even. Zero low-order bit (LSB) first  
"  Next stage repeats with next zero-lower bit first.  
"  Net effect is reversing the bit order of indexes 
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Decimation-in-Time FFT 
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Decimation-in-Frequency FFT 
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Decimation-in-Frequency FFT 
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Decimation-in-Frequency FFT 
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Decimation-in-Frequency FFT 

34 
Penn ESE 531 Spring 2017 – Khanna 
Adapted from M. Lustig, EECS Berkeley 



Non-Power-of-2 FFTs 
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Non-Power-of-2 FFTs 
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Non-Power-of-2 FFTs 

!  For example N = 693 factors into  
"  N = (7)(9)(11)  

!  each of which can be implemented efficiently. We 
would perform  
"  9 x 11 DFT’s of length 7  
"  7 x 11 DFT’s of length 9, and  
"  7 x 9 DFT’s of length 11 
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Non-Power-of-2 FFTs 

!  Historically, the power-of-two FFTs were much 
faster (better written and implemented).  

!  For non-power-of-two length, it was faster to zero 
pad to power of two.  

!  Recently this has changed. The free FFTW package 
implements very efficient algorithms for almost any 
filter length. Matlab has used FFTW since version 6 
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FFT Computation Time 
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FFT as Matrix Operation 

!  WN is fully populated # N2 entries 
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FFT as Matrix Operation 

!  WN is fully populated # N2 entries 
!  FFT is a decomposition of WN into a more sparse form:  

!  IN/2 is an identity matrix. DN/2 is a diagonal matrix with 
entries 1, WN, ··· , WN

N/2-1 
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FFT as Matrix Operation 
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Beyond NlogN 

!  What if the signal x[n] has a k sparse frequency  
"  A. Gilbert et. al, “Near-optimal sparse Fourier representations via 

sampling  
"  H. Hassanieh et. al, “Nearly Optimal Sparse Fourier Transform”  
"  Others…  
"  O(K Log N) instead of O(N Log N) 
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Big Ideas 

!  Fast Fourier Transform 
"  Enable computation of an N-point DFT (or DFT-1) with 

the order of just N· log2 N complex multiplications.  
"  Most FFT algorithms decompose the computation of a DFT into 

successively smaller DFT computations.  
"  Decimation-in-time algorithms  
"  Decimation-in-frequency  

"  Historically, power-of-2 DFTs had highest efficiency 
"  Modern computing has led to non-power-of-2 FFTs with 

high efficiency 
"  Sparsity leads to reduce computation on order K· logN 
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Admin 

!  Project  
"  Due 4/25 
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