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ILast Time

0 Discrete Fourier Transform
= Linear convolution through circular

= Linear convolutions through DFT
= Overlap and add

= Overlap and save

a0 Today

m The Fast Fourier Transform
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: Circular Convolution

0 Circular Convolution:

z1[n] @ z2[n| = Z z1|m|zz[((n —m))N]

For two signals of length N

Note: Circular convolution is commutative

z2[n] @ T1[n| = z1[n| @ T2[N]
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: Circular Convolution as Matrix Operation

0 Circular Convolution

N-1
hn]®@x[n]= ) hl((n-m)), bx[m]
m=0
ho]  AN—1] --- h[1] ] [ x[0] ]
h(1 h(0 h(2 x|1
bl @xln] = [1] [0] | 2] [ ]
B[N —1] H[N —2] Alo] | | xIN-1]

= H.x
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Circular Convolution as Matrix Operation

0 Circular Convolution

HO]  AN—1] - 1] [ x[0]

ML H(O w2l | | Xl

bl @xln] = | |
| hIN —1]  h[N 2] hlo] | | xIN-11
= H.x

( WR/_O - WR{" o WI%(N—I) \

W, = W}\cfo . W;I%n o W}z\cr(z'v—n
\ W}(VN'_l)o WI(VN'—1)n WI(VN—I')(N—l) )
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Circular Convolution as Matrix Operation

a0 Diagonalize

T H[0] O--- 0
WyHWyt=1| 0 H[]--- 0

B 0  H[N-1] |

a0 Right-Multiply by Wy,
" H[0] O--- 0

WyH.=| 0 H[]-- 0 Wy

- 0  H[N-1]

a0 Multiply both sides by x
[ H[0O] O--- 0o |

WyHex=| 0 H[1]--- 0 Wix

I 0  H[N-1]
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Fast Fourter Transtorm Algorithms

0 We are interested in efficient computing methods
for the DFT and inverse DFT:

N—-1

Xlk] = x[n| Wy,
n=0
N—-1

x[n] = X[k Wy,
k=0
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Reminder: Inverse DFT via DFT

0 Recall that we can use the DFT to compute the
inverse DFT:

DFT XK} =  (PFT{X (K}

= Hence, we can just focus on etficient computation of the

DFT.

0 Straightforward computation of an N-point DFT
(ot inverse DFT) requires N* complex
multiplications.
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Computation Order

Q Fast Fourser transform algorithms enable computation of
an N-point DFT (or inverse DFT) with the order of
just N -log, N complex multiplications.

= This can represent a huge reduction in computational

load, especially for large N.

2
N N2 N -log, N N.lﬁ’gz =
16 256 64 4.0
128 16,384 896 18.3
1,024 | 1,048,576 | 10,240 102.4
8,192 | 67,108,864 | 106,496 630.2
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Computation Order

Q Fast Fourser transform algorithms enable computation of
an N-point DFT (or inverse DFT) with the order of
just N -log, N complex multiplications.

= This can represent a huge reduction in computational
load, especially for large N.

2
N N2 N -log, N N_Igg2 =
16 256 64 4.0
128 16,384 896 18.3
1,024 | 1,048,576 | 10,240 102.4
8,192 | 67,108,864 | 106,496 630.2
6 x 108 | 36 x 1012 | 135 x 10° | 2.67 x 10°
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Eigenfunction Properties

a0 Most FFT algorithms exploit the following
properties of W/

= Conjugate Symmetry

k(N—n — Kn ny\ %
WN( & WNk = (W)

= Periodicity in n and k

n k(n+N k+N)n
wir = wilrtN) — k)

s Power

W2 — WN/2
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FFT Algorithms via Decimation

0 Most FFT algorithms decompose the computation of a DFT
into successively smaller DFT computations.

= Decimation-in-time algorithms decompose x[n] into successively
smaller subsequences.

= Decimation-in-frequency algorithms decompose X[k] into
successively smaller subsequences.

0 We mostly discuss decimation-in-time algorithms today.

a0 Note: Assume length of x[n] is power of 2 (N = 27). If not,
zero-pad to closest power.
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Decimation-in-Time FFT

0 We start with the DFT

N—-1
X[k =) x[MWf", k=0,...,N—1
n=0

0 Separate the sum into even and odd terms:

Xkl = ) x[nW§"+ ) x[n]Wy"

n even n odd

s These are two DFT's, each with half the number of
samples (N/2)
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Decimation-in-Time FFT

Let n = 2r (n even) and n =2r + 1 (n odd):

(N/2)-1 (N/2)-1
X[k] = Z x[2r]| W2 + Z x[2r + 1] W,E/2r+1)k
r=0 r=0
(N/2)-1 (N/2)-1
= ) xPRAWFF+ W D> x[2r + W™
r=0 r=0
Note that:
Wark — e=i(%)(2rk) — o= (#7)k _ o

Remember this trick, it will turn up often.

Penn ESE 531 Spring 2017 — Khanna
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Decimation-in-Time FFT

Hence:
(N/2)-1 (N/2)-1
Xk = Y xPRAWf,+wy > x[2r+ 1w,
r=0 r=0
2 Glk]+ WEH[K], k=0,...,N—1
where we have defined:
(N/2)-1
Glk] = Z x[2r|W N/2 = DFT of even samples
r=0
(N/2)-1
H[k] = Z x[2r+1]W,(,"/2 = DFT of odd samples
r=0
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Decimation-in-Time FFT

An 8 sample DFT can then be diagrammed as

G[0]

x[0] o— o —° XU
% G;U\ Wy /
B. o ~
S Xz N/2 - Point ° Al
% DFT
c X[4] o— X[2]
e
6] o—— X[3]

x[1] o— X[4]
w
O
E‘ X3 &y N/2 - Point X[
3 DFT
S x[5] o X[6]
S

X[7] o— X[7]
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Decimation-in-Time FFT

Both G[k] and H|[k] are periodic, with period N /2. For

example
A (N/2)-1
Gkl 2 S xAwg,
r=0
(N/2)-1
Glk+N/2 = Y xfrwgis?
r=0
(N/2)-1
r r(N/2

= > xrwk,wyy
r=0
(N/2)-1

= ) x[2rwg,
r=0

= GJK|

Penn ESE 531 Spring 2017 — Khanna
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Decimation-in-Time FFT

O So,

Glk+(N/2)] = GIA]
Hlk +(N/2)] = HIK]

0 The periodicity of G|k| and H[k] allows us to
further simplify. For the first N/2 points we
calculate G[k] and W *H[k], and then compute the

Sum

X[k] = G[k] + WSHIK] V{k:0< k< g}.

How does periodicity help for g’ < k < N?

Penn ESE 531 Spring 2017 — Khanna
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: Decimation-in-Time FFT

X[k] = G[k] + WxHIK]

for%§k<N:

WhHN/2)

X[k + (N/2)] =?

Penn ESE 531 Spring 2017 — Khanna
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V{k:0§k<g}.
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: Decimation-in-Time FF1

X[k + (N/2)] = G[k] — WxHIK]
0 We previously calculated Glk] and W *H[K].

0 Now we only have to compute their difference to
obtain the second half of the spectrum. No
additional multiplies are required.

Penn ESE 531 Spring 2017 — Khanna
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Decimation-in-Time FFT

The N-point DFT has been reduced two N/2-point DFTs,

plus N /2 complex multiplications. The 8 sample DFT is then:

x[0]
x[2]
x[4]
x[6]
x[1]

Even Samples

x[3]
x[5]
X[7]

Odd Samples

Ol

O

G[K]

o X[0]

N/2 - Point
DFT

X[1]

X[2]

X[3]

N/2 - Point
DFT

Penn ESE 531 Spring 2017 — Khanna
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X[4]

X[5]

X[6]

X[7]
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Decimation-in-Time FFT

0 Note that the inputs have been reordered so that the
outputs come out in their proper sequence.

a0 We can define a butterfly operation, e.g., the
computation of X[0] and X[4] from G[0] and HJ[0]:

G[O] o X[0] =G[0] + WNO H[O]

H[0] ——>—o - X[4] =G[0] - WL H[0]

Penn ESE 531 Spring 2017 — Khanna
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Decimation-in-Time FFT

o Still O(N?) operations.... What should we do?

x[0] o——
x[2] O——

x[4] o——

Even Samples

x[6] o—
x[1] o——
x[3] O—

x[5] o——

Odd Samples

Glk]

N/2 - Point
DFT

~_ 2,

SN
DX X

N/2 - Point
DFT

x[7] o——

Penn ESE 531 Spring 2017 — Khanna
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X[0]
X[1]
X[2]
X[3]
X[4]
X[5]
X[6]

X[7]
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Decimation-in-Time FFT

0 We can use the same approach for each of the N/2
point DFT’s. For the N = 8 case, the N/2 DFT's

look like

0
X0 s - point V° Gl
x[4] o— DFT o o G[1]

0
W2
X[2] o—— O © G[2]
N/4 - Point 1 1
DFT | Wz '
x[6] o—— ———o - © G[3]

-1

*Note that the inputs have been reordered again.
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Adapted from M. Lustig, EECS Berkeley



Decimation-in-Time FFT

0 At this point for the 8 sample DFT, we can replace
the N/4 = 2 sample DFT’s with a single butterfly.
The coefficient 1s

Wija =Wy =Wo=e/" =—1

Penn ESE 531 Spring 2017 — Khanna
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: Decimation-in-Time FFT

0 At this point for the 8 sample DFT, we can replace
the N/4 = 2 sample DFT’s with a single butterfly.
The coeftficient is

Wija = Wejs = Wo = e /™ = —1

The diagram of this stage is then
x[0] Q x[0] + x[4]

x[4] —»—0 —>- x[0] - x[4]

Penn ESE 531 Spring 2017 — Khanna
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Decimation-in-Time FFT

Combining all these stages, the diagram for the 8 sample DFT is:

x[0] O_ZX: o o \ /° X[0]
X[4] o—— \\ / / X[1]
X[2]

x[2]

x[6] X[3]
x[1] X[4]
x[5] X[5]
x[3] X[6]
x[7] X[7]

This the decimation-in-time FFT algorithm.

Penn ESE 531 Spring 2017 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

0 In general, there are log,N stages of decimation-in-time.

0 Fach stage requires N/2 complex multiplications, some of
which are trivial.

0 The total number of complex multiplications is (N/2) log,N,
or O(N log,N)

Penn ESE 531 Spring 2017 — Khanna
Adapted from M. Lustig, EECS Berkeley

28



Decimation-in-Time FFT

0 In general, there are log,N stages of decimation-in-time.

0 Fach stage requires N/2 complex multiplications, some of
which are trivial.

0 The total number of complex multiplications is (N/2) log,N,
or O(N log,N)

0 The order of the input to the decimation-in-time FFT
algorithm must be permuted.
= First stage: split into odd and even. Zero low-order bit (LSB) first
= Next stage repeats with next zero-lower bit first.

= Net effect is reversing the bit order of indexes

Penn ESE 531 Spring 2017 — Khanna
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Decimation-in-Time FFT

This is illustrated in the following table for N = 8.

Decimal | Binary | Bit-Reversed Binary | Bit-Reversed Decimal
0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
D 101 101 5
6 110 011 3
7 111 111 7
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Decimation-in-Frequency FFT

The DFT s
N—1

X[kl =Y x[n]Wgk

n=0

If we only look at the even samples of X[k], we can write k = 2r,

N—-1

X[2r] = 3 x[nwy®"
n=0

We split this into two sums, one over the first N/2 samples, and
the second of the last N/2 samples.

(N/2)—1 (N/2)-1
X2rl= 3 Wi+ 3 x{n+ N/2qwg N2
n=0 n=0

Penn ESE 531 Spring 2017 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Frequency FFT

But Wy "N = WRrwWll = Wi = wyp,.
We can then write

(N/2)—-1 (N/2)—1 T
X2r] = Y xmwZm+ N x[n+ n/2wg )
n=0 n=0
(N/2)—1 (N/2)-1
= Y x[AW{"+ ) x[n+ N/2JWG"
n=0 =0
(N/2)-1
= ) (xIn]+x[n+N/2]) Wi,
n=0

This is the N/2-length DFT of first and second half of x|n]
summed.

Penn ESE 531 Spring 2017 — Khanna
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Decimation-in-Frequency FFT

X[2r] = DFT w {(x[n] + x[n+ N/2])}
X[2r+1] = DFTg {(x[n] —x[n+ N/2]) Wg}

(By a similar argument that gives the odd samples)

Continue the same approach is applied for the N/2 DFTs, and the
N/4 DFT's until we reach simple butterflies.

Penn ESE 531 Spring 2017 — Khanna
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Decimation-in-Frequency FFT

The diagram for and 8-point decimation-in-frequency DFT is as
follows

X[0]

X[4]

X[2]

X[6]

X[1]

X[5]

X[3]

This is just the decimation-in-time algorithm reversed!
The inputs are in normal order, and the outputs are bit reversed.

Penn ESE 531 Spring 2017 — Khanna
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Non-Power-of-2 FFT's

A similar argument applies for any length DFT, where the length
N is a composite number.

For example, if N = 6, a decimation-in-time FFT could compute
three 2-point DFT's followed by two 3-point DFT's

X[0] 9 2.point ° ©  X[0]
DFT 3-Point

x[3] DFT X[2]

X[1] 9| 2-point X14]
DFT

x[4] X[1]

x[2] o e X3

x[5] X[5]

Penn ESE 531 Spring 2017 — Khanna
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Non-Power-of-2 FFT's

Good component DFT's are available for lengths up to 20 or so.
Many of these exploit the structure for that specific length. For
example, a factor of

Wt = e TN/ = ei5 = —j  Why?

just swaps the real and imaginary components of a complex
number, and doesn’t actually require any multiplies.

Hence a DFT of length 4 doesn’t require any complex multiplies.

Half of the multiplies of an 8-point DFT also don't require
multiplication.

Composite length FFT's can be very efficient for any length that
factors into terms of this order.

Penn ESE 531 Spring 2017 — Khanna
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Non-Power-of-2 FFT's

0 For example N = 693 factors into
= N=7O)1D
0 each of which can be implemented efficiently. We
would perform
= 9x 11 DFT’s of length 7
= 7x 11 DFI’s of length 9, and
= 7x9DFT’s of length 11

Penn ESE 531 Spring 2017 — Khanna
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Non-Power-of-2 FFT's

0 Historically, the power-of-two FFTs were much
faster (better written and implemented).

0 For non-power-of-two length, it was faster to zero
pad to power of two.

0 Recently this has changed. The free FFT'W package
implements very etficient algorithms for almost any
filter length. Matlab has used FF'TW since version 6

Penn ESE 531 Spring 2017 — Khanna
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FFT Computation Time

FFT computation time (Matlab FFTW) on MacBookPro

run time [ms]

50 100 150 200 250

Penn ESE 531 Spring 2017 — Khanna
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FI]

[ as Matrix Operation

a0 Wy is fully populated = N? entries

[ X0
X[]
\ XN -1] /

(o
WO
N—1)0

\ wV

Penn ESE 531 Spring 2017 — Khanna
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On
WW

Kn
Wi

N—l
wiN—Dn

W,%(N—l) \

k(N—1)
WW

N—i N—1
wN-DN-1)

( x[0] \
[}
\ x(N—1] /
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FEF'T as Matrix Operation

( X[0] \ / W,(\JIO e W,?," e WE/(N_I) \ ( x[0] \
th] = W,‘\‘,0 . WA‘," .. Wx(}\’—l) x[.n]
\ X[N'— 1] / \ Wl(VN'—1)o N WI(VN'—I)n N WkN—i)(N—l) / \ x[N.— 1] /

a0 Wy is fully populated = N? entries

o FFT is a decomposition of Wy, into a more sparse form:

Fr — IN/2 DN/2 WN/z 0 Even-Odd Perm.
N In2 —Dny2 0 Wh /2 Matrix

a Iy, 1s an identity matrix. Dy, is a diagonal matrix with

entries 1, Wy, -+, W V%!
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FEF'T as Matrix Operation

Example: N =4
1 0 1 o |1 1
£ — 01 0 Wi 1 -1
T 110 -1 0 0 0
01 0 —-W,| |0 O

Penn ESE 531 Spring 2017 — Khanna
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= = O O

o O O =

o= O O

o O = O

= O O O
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Run Time (sec)

Beyond NlogN

10

e
—_—

0.01

0.001

0.0001

1e-05

0 What if the signal x[n] has a k sparse trequency

= A. Gilbert et. al, “Near-optimal sparse Fourier representations via

sampling

= H. Hassanieh et. al, “Nearly Optimal Sparse Fourier Transform”

s Others...

= O(K Log N) instead of O(N Log N)

Run Time vs Signal Size (k=50)

isFFT 3.0 (Exact)
FEIW s e g
AAFFT 0.9 e
o
-‘V"
4’.'
-"’
,'v-'
’_I-"
.-"‘
3 =
; T-. > T Pt
- ""
¢'L"
"’

210 211 212 213 214 215 216 217 218 219 220 221

Signal Size (n)

222 223 224

10 |

—_

e
-

0.01

Run Time (sec)

o
g

Run Time vs Signal Sparsity (N=222)

sFFT 3.0 (Exact)

FFTW
AAFFT 0.9
26 27 28 29 210 211 212 213 214 215 216 217 218
Sparsity (K)

From: http://groups.csail.mit.edu/netmit/sFFT/paper.html



Big Ideas

0 Fast Fourier Transform

Enable computation of an N-point DFT (or DFT!) with
the order of just N *log, N complex multiplications.

Most FFT algorithms decompose the computation of a DFT into
successively smaller DFT computations.
= Decimation-in-time algorithms

= Decimation-in-frequency
Historically, power-of-2 DFT's had highest etficiency

Modern computing has led to non-power-of-2 FFT's with
high etficiency

Sparsity leads to reduce computation on order K -logN

Penn ESE 531 Spring 2017 — Khanna
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0 Project
m Due 4/25
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