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Fast Fourier Transform (con’t) 
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Previously 

!  Circular Convolution 
"  Linear convolution with circular convolution 

!  Discrete Fourier Transform  
"  Linear convolution through circular  
"  Linear convolutions through DFT  

!  Fast Fourier Transform 

!  Today  
"  Circular convolution as linear convolution with aliasing 
"  DTFT, DFT, FFT practice 
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Circular Convolution 

!  Circular Convolution: 

For two signals of length N 
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Compute Circular Convolution Sum 
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Compute Circular Convolution Sum 
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Compute Circular Convolution Sum 
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y[0]=2 
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Compute Circular Convolution Sum 
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y[0]=2 
y[1]=2 
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Compute Circular Convolution Sum 
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y[0]=2 
y[1]=2 
y[2]=3 
 
 

Penn ESE 531 Spring 2017 – Khanna 
Adapted from M. Lustig, EECS Berkeley 

Compute Circular Convolution Sum 
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y[0]=2 
y[1]=2 
y[2]=3 
y[3]=4 
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Result 
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y[0]=2 
y[1]=2 
y[2]=3 
y[3]=4 
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Linear Convolution 

!  We start with two non-periodic sequences: 

"  E.g. x[n] is a signal and h[n] a filter’s impulse response 

!  We want to compute the linear convolution: 

"  y[n] is nonzero for 0 ≤ n ≤ L+P-2 with length M=L+P-1 
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Requires LP multiplications 
 

Linear Convolution via Circular Convolution 

!  Zero-pad x[n] by P-1 zeros 

!  Zero-pad h[n] by L-1 zeros 

!  Now, both sequences are length M=L+P-1 
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Example 
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Circular Conv. as Linear Conv. w/ Aliasing 

!  If the DTFT X(ejω) of a sequence x[n] is sampled at 
N frequencies ωk=2πk/N, then the resulting 
sequence X[k] corresponds to the periodic sequence 

!  And       is the 
DFT of one period given as  
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Circular Conv. as Linear Conv. w/ Aliasing 

!  If x[n] has length less than or equal to N, then 
xp[n]=x[n] 

!  However if the length of x[n] is greater than N, this 
might not be true and we get aliasing in time 
"  N-point convolution results in N-point sequence 
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Circular Conv. as Linear Conv. w/ Aliasing 
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!  Given two N-point sequences (x1[n] and x2[n]) and 
their N-point DFTs (X1[k] and X2[k]) 

!  The N-point DFT of x3[n]=x1[n]*x2[n] is defined as 

!  And therefore X3[k]=X1[k]X2[k], where the inverse 
DFT of X3[k] is 

X 3[k]= X 3(e
j(2πk /N ) )

Circular Conv. as Linear Conv. w/ Aliasing 
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!  Therefore 

!  The N-point circular convolution is the sum of 
linear convolutions shifted in time by N 

x3p[n]= x1[n]⊗ x2[n]N 

Example 1: 

!  Let 

!  The N=L=6-point circular convolution results in 
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Example 1: 

!  Let 

!  The N=L=6-point circular convolution results in 
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Example 1: 

!  Let 

!  The linear convolution results in 
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Example 1: 

!  Let 

!  The linear convolution results in 
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Example 1: 

!  The sum of N-shifted linear convolutions equals the N-point 
circular convolution 
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Example 1: 

!  The sum of N-shifted linear convolutions equals the N-point 
circular convolution 
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Example 1: 

!  The sum of N-shifted linear convolutions equals the N-point 
circular convolution 
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Example 1: 

!  If I want the circular convolution and linear 
convolution to be the same, what do I have to do? 
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Example 1: 

!  If I want the circular convolution and linear 
convolution to be the same, what do I have to do? 
"  Take the N=2L-point circular convolution 
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Example 2: 

!  Let 
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Example 2: 

!  Let 

 

 
!  What does the L-point circular convolution look like? 
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Linear convolution 

Example 2: 

!  Let 

 

 
!  What does the L-point circular convolution look like? 
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Linear convolution 

Example 2: 

!  The L-shifted linear convolutions 
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Example 2: 

!  The L-shifted linear convolutions 
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Discrete Fourier Transform 

!  The DFT 

!  It is understood that, 
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DFT vs. DTFT 

!  The DFT are samples of the DTFT at N equally 
spaced frequencies 
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DFT vs DTFT 

!  Back to example 
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Fast Fourier Transform Algorithms 

!  We are interested in efficient computing methods 
for the DFT and inverse DFT: 
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Eigenfunction Properties 

!  Most FFT algorithms exploit the following 
properties of WN

kn: 
"  Conjugate Symmetry 

 

"  Periodicity in n and k 

"  Power 
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FFT Algorithms via Decimation 

!  Most FFT algorithms decompose the computation of a DFT 
into successively smaller DFT computations.  
"  Decimation-in-time algorithms decompose x[n] into successively 

smaller subsequences.  
"  Decimation-in-frequency algorithms decompose X[k] into 

successively smaller subsequences.  

!  We mostly discuss decimation-in-time algorithms today.  

!  Note: Assume length of x[n] is power of 2 (N = 2v). If not, 
zero-pad to closest power. 
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Decimation-in-Time FFT 

!  We start with the DFT 

!  Separate the sum into even and odd terms: 

"  These are two DFTs, each with half the number of 
samples (N/2) 
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Decimation-in-Time FFT 
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Decimation-in-Time FFT 
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samples 

samples 
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Decimation-in-Time FFT 
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Decimation-in-Time FFT 

!  So, 

!  The periodicity of G[k] and H[k] allows us to 
further simplify. For the first N/2 points we 
calculate G[k] and WN

kH[k], and then compute the 
sum 
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Decimation-in-Time FFT 
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Decimation-in-Time FFT 
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-1 

Decimation-in-Time FFT 
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Decimation-in-Time FFT 
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!  We can use the same approach for each of the N/2 
point DFT’s. For the N = 8 case, the N/2 DFTs 
look like 
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Decimation-in-Time FFT 

!  At this point for the 8 sample DFT, we can replace 
the N/4 = 2 sample DFT’s with a single butterfly. 
The coefficient is 
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Decimation-in-Time FFT 
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•  3=log2(N)=log2(8)  stages 
•  4=N/2=8/2 multiplications in each stage 

•  1st stage has trivial multiplication 
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Decimation-in-Time FFT 
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!  In general, there are log2N stages of decimation-in-time.  
!  Each stage requires N/2 complex multiplications, some of 

which are trivial.  
!  The total number of complex multiplications is (N/2) log2N, 

or O(N log2N) 
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Decimation-in-Time FFT 
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!  In general, there are log2N stages of decimation-in-time.  
!  Each stage requires N/2 complex multiplications, some of 

which are trivial.  
!  The total number of complex multiplications is (N/2) log2N, 

or O(N log2N) 

!  The order of the input to the decimation-in-time FFT 
algorithm must be permuted.  
"  First stage: split into odd and even. Zero low-order bit (LSB) first  
"  Next stage repeats with next zero-lower bit first.  
"  Net effect is reversing the bit order of indexes 
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Decimation-in-Time FFT 
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Decimation-in-Time FFT 
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•  3=log2(N)=log2(8)  stages 
•  4=N/2=8/2 multiplications in each stage 

•  1st stage has trivial multiplication 

Decimation-in-Frequency FFT 
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Decimation-in-Frequency FFT 
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rN 
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Decimation-in-Frequency FFT 
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Decimation-in-Frequency FFT 
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Decimation-in-Frequency FFT 
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Example 1: 
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Example 1: 
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Example 2: 
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Example 2: 
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Big Ideas 
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!  Discrete Fourier Transform (DFT) 
"  For finite signals assumed to be zero outside of defined length 
"  N-point DFT is sampled DTFT at N points 
"  Useful properties allow easier linear convolution 

!  Fast Convolution Methods 
"  Use circular convolution (i.e DFT) to perform fast linear convolution 

"  Overlap-Add, Overlap-Save 

"  Circular convolution is linear convolution with aliasing 

!  Fast Fourier Transform 
"  Enable computation of an N-point DFT (or DFT-1) with the order 

of just N· log2 N complex multiplications.  

!  Design DSP systems to minimize computations! 

Admin 

!  Project  
"  Due 4/25 
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