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Previously

oelsiese’s

o Circular Convolution

= Lineat convolution with circular convolution
o Discrete Fourier Transform

= Linear convolution through circular

= Linear convolutions through DFT

0 Fast Fourier Transform

o Today
= Circular convolution as linear convolution with aliasing
= DTFT, DFT, FFT practice

Penn ESE 531 Spring 2017 — Khanna
Adapted from M. Lustig, EECS Berkeley

Circular Convolution

seseees

o Circular Convolution:
N-1

z1[n) @ waln) 2 3 @1 [mlas[((n — m)) w]

m=0
For two signals of length N
Note: Circular convolution is commutative
z2[n] @ z1[n] = 1[n] @ 22[n]

Penn ESE 531 Spring 2017 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Compute Circular Convolution Sum

z1[n]
1 o 0
01 2 3 4 5 6 n
z2[n]
1 o 0o
o 1 2 3 n
N-1
z1[n] @z2[n] = ) z1[m]za[((n —m))N]
m=0

Penn ESE 531 Spring 2017 — Khanna
Adapted from M. Lustig, EECS Berkeley

Compute Circular Convolution Sum

eelsieeels

z1[n]

o
~
©
IS
og
of
S

1¢q o T
5 6N

N-1
1[n] @ waln] £ 3 walmlzal(n —m)) ]
m=0

Penn ESE 531 Spring 2017 — Khanna
Adapted from M. Lustig, EECS Berkeley

Compute Circular Convolution Sum

eelsieeels

y[0]=2
z1[n]
T
01 2 3 4 5 6 n
z2[n]
[ Tl
01 2 3 4 5 61N
N-1

Penn ESE 531 Spring 2017 — Khanna
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Compute Circular Convolution Sum

oelsiese’s

y[0]=2

z1[n] y[1]=2
o

| [11]
[

og
X
3

[z2[n)
0o 1 2 3 4 6 N
N-1

A
z1[n] @ aln] = Y @1 [mlas[((n — m)) N]
m=0
Penn ESE 531 Spring 2017 — Khanna
Adapted from M. Lustig, EECS Berkeley
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seseees

Compute Circular Convolution Sum

o
yil=
O yi2=3
y[3]=4
01 2 3 4 5 6 n
[z2[n]
n

0o 1 2 3 4 5 6
N-1

a1[n] @ waln] 2 aalmlea[(n —m)) ]
m=0

Penn ESE 531 Spring 2017 — Khanna
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Compute Circular Convolution Sum

oelsiese’s

y[0]=2
z1[n] y[1]=2
1 o' o T T y[2]=3
01 2 3 4 5 6 n
[2[n]
T 1

0o 1 2 3 4 5

il

ARICENDED PN

m=0

[m]a2[((n —m))n]

Penn ESE 531 Spring 2017 — Khanna
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i Result
y[0]=2
y[1]=2
y[2]=3
y[3]=4
4

1] [ T
01 2 3 4 5 6 n

N-1
1) @ zaln] £ 3 21 [mlea]((n —m)) ]

m=0

Penn ESE 531 Spring 2017 — Khanna
Adapted from M. Lustig, EECS Berkeley
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eelsieeels

Linear Convolution

0 We start with two non-periodic sequences:
zln] 0<n<L-1
hln] 0<n<P-1

= E.g. x[n] is a signal and h[n] a filter’s impulse response

o We want to compute the linear convolution:

y[n] = z[n] x h[n] = 2—: z[m]h[n —m]

= y[n] is nonzero for 0 < n < L+P-2 with length M=L+P-1

Penn ESE 531 Spring 2017 - Khanna Requires LP multiplications

Adapted from M. Lustig, EECS Berkeley

Linear Convolution via Circular Convolution

eelsieeels

0 Zero-pad x[n] by P-1 zeros
] = zln] 0<n<L-1
N L

L<n<L+P-2
a Zero-pad h[n] by L-1 zeros

A [ hp] 0<n<P-1
2N =10 P<n<Lt+P-2

a Now, both sequences are length M=L+P-1

Penn ESE 531 Spring 2017 — Khanna
Adapted from M. Lustig, EECS Berkeley




oelsiese’s

Example

1
o o o o T
01234vn

Circular flip’

M=L+P-1=8
ylnl = z1[n] @ w2[n] = z1[n] * 22[n]

Penn ESE 531 Spring 2017 — Khanna
Adapted from M. Lustig, EECS Berkeley

oelsiese’s

Citcular Conv. as Linear Conv. w/ Aliasing

0 If the DTFT X(¢/%) of a sequence x[n] is sampled at
N frequencies W, =2 T k/N, then the resulting
sequence X[k] corresponds to the periodic sequence

o0

= ) xln—rN].

r=—o00

X(/@Ny 0<k<N-1,

o And XK=y, otherwise is the
DFT of one period given as
x[n], 0<n<N-1,
xpln] = .
0, otherwise.
Penn ESE 531 Spring 2017 - Khanna 14

seseees

Circular Conv. as Linear Conv. w/ Aliasing

o [l O<nsN -1,

=10, otherwise.

o If x[n] has length less than or equal to N, then
x,[0]=x[n]

0 However if the length of x[n] is greater than N, this
might not be true and we get aliasing in time

= N-point convolution results in N-point sequence

Penn ESE 531 Spring 2017 - Khanna

seseees

Citcular Conv. as Linear Conv. w/ Aliasing

o Given two N-point sequences (x,[n] and x,[n]) and
their N-point DFTs (X, [k] and X,[k])

a The N-point DFT of x;[n]=x,[n]*x,[n] is defined as
j(27k/IN)
X [k]=X (e’ )

o And therefore X;[k]=X, [k]X,[k], where the inverse
DFT of X;[k] is

Circular Conv. as Linear Conv. w/ Aliasing

eelsieeels

o0

> xln—rN), 0snsN-1,
Pr——
0, otherwise,

x3pln] =
0 Therefore

x3p[n] =x,[n]® x,[n]

0 The N-point circular convolution is the sum of
linear convolutions shifted in time by N

Penn ESE 531 Spring 2017 - Khanna
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0
Z x3ln—rN], 0<n=N-1,
x3/’[n] =
0, otherwise,

Penn ESE 531 Spring 2017 - Khanna 16

¢ Example 1:

:

:

o Let

M

0 The N=L=06-point circular convolution results in

Penn ESE 531 Spring 2017 - Khanna 18




Example 1:

oelsiese’s

o Let

1

[I]1]

0 L=P

0 The N=L=06-point circular convolution results in

(L]

0 N-1 L

x(n) @ x,(n).
N=L=6

Example 1:

oelsiese’s

o Let

|

0

[ ] xy[n) = x3(n].
L=P=6
L=P n

0 The linear convolution results in

Penn ESE 531 Spring 2017 - Khanna 19
¢ Example 1:
o Let
\I I l ‘ I [ x1[n) = x,[n],
L=pP=6
0 L=P 7
0 The linear convolution results in
L
l x3ln) = xy[n] * x3[n]
T
0 2L-1 n
Penn ESE 531 Spring 2017 - Khanna 21
¢ Example 1:
0 The sum of N-shifted linear convolutions equals the N-point
circular convolutios -
‘ x3[n) = x[n) » xz[n]
| Ll I ] 11,
0 2L-1
®
L] e
o111 I ] [11s
o N n
©
'-l nln+ N,
L=6
e
-N 0 n
Penn ESE 531 Spring 2017 - Khanna 23

Penn ESE 531 Spring 2017 - Khanna 20
¢ Example 1:
0 The sum of N-shifted linear convolutions equals the N-point
circular convolution .
] x3[n) = xy[n] » xy[m)
o 11 ] ] ‘ ] 14
0 2L-1 n
®
Ll S
1] I ] I I L1+
0 N n
©
L} x3[n+N),
] I N=L=6
1] ] l 14
-N 0 n
Penn ESE 531 Spring 2017 - Khanna 2
¢ Example 1:
0 The sum of N-shifted linear convolutions equals the N-point
circular convolutiof
x3ln) = xy[n] = x3[n])
| L] ] I 11,
0 2L-1
"I ‘ I l l x @l
N=L=6
[ N-1 n
©
L x[n+ N,
] [ N=L=6
1LY
-N 0 n
Penn ESE 531 Spring 2017 - Khanna 24




oelsiese’s

Example 1:

o If I want the circular convolution and linear

convolution to be the same, what do T have to do?

Example 1:

oelsiese’s

a If I want the circular convolution and linear

convolution to be the same, what do I have to do?

= Take the N=2L-point circular convolution

xi[n) @ x,n),
N=2L

Penn ESE 531 Spring 2017 - Khanna 25
¢ Example 2:
0 Let Zl I I sl
1
[111
o L Ld
(@)
1 xln]
1111 n
®)
Penn ESE 531 Spring 2017 - Khanna 27
¢ Example 2:
0 Let ZI 1 Y xlnl
o
] syl = x1[n) © x2ln] = 'Z;xg[n —rL], 0<n<L-1,
0, otherwise.
1 xln]
T n
(b)
Linear convolution ; I
5[] =[] + xpfn
alll ’ I
0 P [ | n
L+P-1
0 What does the L-point circular convolution look like?
29

Penn ESE 531 Spring 2017 - Khanna
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¢ Example 2:
o Let 2} ‘ ] xiln]
1
L n
(@)
1 x[n]
111 n
®
Linear convolution T sl el
alll ” ”l 1
0 P Lt n
Lep-1
o What does the L-point circular convolution look like?
Penn ESE 531 Spring 2017 - Khanna 28
¢ Example 2:
0 The L-shifted linear convolutions
x3ln]
.II”” hl
o (A 5
Lepot
®
xlne L]
OSSO 1111 1
()
w01
i " ,,nlllmh
©
30

Penn ESE 531 Spring 2017 - Khanna




oelsiese’s

Example 2:

0 The L-shifted linear convolutions

oelsiese’s

Discrete Fourier Transform

o The DFT
e
z[n] = ¥ Z X[k]Wﬁk" Inverse DFT, synthesis
k=0
N-1
X[k = z[n]Wkn DFT, analysis
n=0

o It is understood that,
zln)] = 0
X[k =0

outside 0 <n< N -1
outside 0 < k<N -1

Penn ESE 531 Spring 2017 — Khanna

Adapted from M. Lustig, EECS Berkeley

seseees

DFT vs DTFT

o Back to example

X[E]

4

> Wie

n=0

_ ik sin(gk)
sin({5k)

10

[xe’w)|

E3 3,24 324

Penn ESE 531 Spring 2017 — Khanna

xlnl
]
o L r'i- ) "
®
LHJ wln s L)
xylnl=xyln] + xfn s LL0=n s Lot
I 1]
Penn ESE 531 Spring 2017 - Khanna © 31
: DPT vs. DTFT
0 The DFT are samples of the DTFT at N equally
spaced frequencies
X[k = X(€™)|yepzz 0<k<N-—1
Penn ESE 531 Spring 2017 — Khanna
Adapted from M. Lustig, EECS Berkeley 33
¢ Fast Fourier Transform Algorithms
0 We are interested in efficient computing methods
for the DFT and inverse DFT:
N-1
X[k] = x[n|Wf",  k=0,...,N—1
n=0
N-1
x[n] = XIKIWg*,  n=0,...,N—1
k=0
Wy = e_j (%)
Penn ESE 531 Spring 2017 — Khanna
Adapted from M. Lustig, EECS Berkeley 35

Adapted from M. Lustig, EECS Berkeley 34
¢ Eigenfunction Properties
0 Most FFT algorithms exploit the following
properties of Wykn:
= Conjugate Symmetry
W/\‘;(N_n) — ngkn — (chn)*
= Periodicity in n and k
WI((/" — WNk(n+N) — W/E/HN)H
= Power
WF = Wy
Penn ESE 531 Spring 2017 — Khanna
Adapted from M. Lustig, EECS Berkeley 36




oelsiese’s

FFT Algorithms via Decimation

0 Most FFT algorithms decompose the computation of a DFT
into successively smaller DFT computations.
= Decimation-in-time algorithms decompose x[n] into successively
smaller subsequences.
= Decimation-in-frequency algorithms decompose X[k] into
successively smaller subsequences.

=}

We mostly discuss decimation-in-time algorithms today.

0 Note: Assume length of x[n] is power of 2 (N = 2). If not,
zero-pad to closest power.

Penn ESE 531 Spring 2017 — Khanna
Adapted from M. Lustig, EECS Berkeley 37

Decimation-in-Time FFT

oelsiese’s

o We start with the DFT
N-1
X[k =Y x[AWg", k=0,...,N-1

n=0

0 Separate the sum into even and odd terms:

X[k = D" x[mWim + 3 ] Wi

n even n odd

= These are two DFTs, each with half the number of
samples (N/2)

Penn ESE 531 Spring 2017 — Khanna

seseees

Decimation-in-Time FFT

Let n =2r (n even) and n =2r +1 (n odd):

(v/2)-1 (N/2)-1
XK = Y AW+ S xfer+ gwirk
r=0 r=0
(N/2)-1 (N/2)-1
= > xRAWEF+ Wl > xfer + 1wk
r=0 r=0
(N/2)-1 (N/2)-1
XK = Y AW, + WE > xler+ Wi,
r=0 r=0

Penn ESE 531 Spring 2017 — Khanna
Adapted from M. Lustig, EECS Berkeley 39

Decimation-in-Time FFT

eelsieeels

An 8 sample DFT can then be diagrammed as X[K] = G[k] + W,{}H[k]

x[0] o—— X[0]
o
o
] o—
s a2 N/2 - Point X
g g o— OFT X2l
Y i) o—r X1
x[1] o— X4
o
o
% M3 wy2- Point XBs]
% s o— PFT X[6]
°
© X[7] o—— X[r]

Penn ESE 531 Spring 2017 — Khanna
Adapted from M. Lustig, EECS Berkeley 4

Adapted from M. Lustig, EECS Berkeley 38
¢ Decimation-in-Time FFT
Hence:
(N/2)-1 (N/2)-1
XK = S xRAWL, +WE > x[er+ Wi,
=0 =0
A 3
£ Gk + WEHIK, k=0,...,N—1
where we have defined:
(N/2)-1
GlK] 4 Z x[2r] W,(,k/z = DFT of even samples
=0
(N/2)-1
HIK] B Z x[2r+1] W,(,“/2 = DFT of odd samples
=0
Penn ESE 531 Spring 2017 — Khanna
Adapted from M. Lustig, EECS Berkeley 40
¢ Decimation-in-Time FFT
a So,
Glk+(N/2)] = GIA]
Hlk+(N/2)] = HIK]
a The periodicity of G[k] and H[k] allows us to
further simplify. For the first N/2 points we
calculate G[k] and W *H[k], and then compute the
sum
X N
X[K] = G[k] + WEHIK] Vk:0< k< 3}
How does periodicity help for § < k < N?
Penn ESE 531 Spring 2017 — Khanna
Adapted from M. Lustig, EECS Berkeley 42




Decimation-in-Time FFT

oelsiese’s

X[K] = G[K] + WiHIK] V{k:0<k< g}.

for%§k<N:

WiHN2) o

X[k + (N/2)] =?

Penn ESE 531 Spring 2017 — Khanna
Adapted from M. Lustig, EECS Berkeley 45

Decimation-in-Time FFT

oelsiese’s

X[k] = G[k] + W{HIK] v{k:0<k< g}.

for %’ <k<N:
WAI;+(N/2) -1

X[k +(N/2)] = G[k] — WHIK]

Penn ESE 531 Spring 2017 — Khanna

seseees

Decimation-in-Time FFT

The N-point DFT has been reduced two N/2-point DFTs,
plus N/2 complex multiplications. The 8 sample DFT is then:

Gkl

x[0] o—— o X[o]
2
8
Q x2] o— X1
g N72 - Point &
8 DFT
< x4 o= X2
g
R — X131

x[1] o— X[4]
o
8
g X N2 point X
1 DFT
g x[5] o—— X[e]
3

x[7] o——f o > X[7]

HIgwy T
Penn ESE 531 Spring 2017 - Khanna
Adapted from M. Lustig, EECS Berkeley 4

Adapted from M. Lustig, EECS Berkeley 44
¢ Decimation-in-Time FFT
0 We can use the same approach for each of the N/2
point DFT’s. For the N = 8 case, the N/2 DFT's
look like
x[0] o——
& N4 - Point ° ol
x[4] o— DFT o G[1]
Wy°
2] o—|
2 N/4 - Point 1 1 -
pFT | Wi
x[6] o—— ~ G[3]
-1
*Note that the inputs have been reordered again.
Penn ESE 531 Spring 2017 — Khanna
Adapted from M. Lustig, EECS Berkeley 46

Decimation-in-Time FFT

eelsieeels

0 At this point for the 8 sample DFT, we can replace
the N/4 = 2 sample DFT’s with a single butterfly.
The coefficient is

Wija = Wejg = W = 7™ = -1

The diagram of this stage is then
x[0] x[0] + x[4]

(4] > -
-1

x[0] - x[4]

Penn ESE 531 Spring 2017 — Khanna
Adapted from M. Lustig, EECS Berkeley 47

Decimation-in-Time FFT

eelsieeels

Combining all these stages, the diagram for the 8 sample DFT is:

x[4] o— 5 X[1]

Wy2®
x[2] X[2]
Wy
x[6] o—— X[3]
1 1 w0
x[1] X[4]
WN1 -1

5] X[5]
T wZ N
M CEANEE ] X
N2 N X7]
-1

X[7]
1 -1

+ 3=log,(N)=log,(8) stages
* 4=N/2=8/2 multiplications in each stage

Penn ESE 531 Spring 2017 - Khanna + 1st stage has trivial multiplication
Adapted from M. Lustig, EECS Berkeley




Decimation-in-Time FFT

oelsiese’s

o

In general, there are log,N stages of decimation-in-time.

o

Each stage requires N/2 complex multiplications, some of
which ate trivial.

o

The total number of complex multiplications is N/2) log,N,
or O(N log,N)

Penn ESE 531 Spring 2017 — Khanna

Decimation-in-Time FFT

oelsiese’s

0 In general, there are log,N stages of decimation-in-time.
0 Each stage requires N/2 complex multiplications, some of
which are trivial.

0 The total number of complex multiplications is (N/2) log,N,
or O(N log,N)

0 The order of the input to the decimation-in-time FF'T
algorithm must be permuted.
= First stage: split into odd and even. Zero low-order bit (LSB) first
= Next stage repeats with next zero-lower bit first.

= Net effect is reversing the bit order of indexes

Penn ESE 531 Spring 2017 — Khanna
Adapted from M. Lustig, EECS Berkeley 50

Decimation-in-Time FFT

seseees

Combining all these stages, the diagram for the 8 sample DFT is:

x[0] o— X[0]
j i x[1]

X[4]
1 WMG
X[2] o— X[2]
WNQ1///Z$\\h
x[6] X[3]
KL R
x[1] X[4]
(5] D—X—
]

1
w,
VSN o
Wy? w2 /1\
x[3] X[6]
W' /\ wy® A
-1

x[7] X[7]

* 3=log,(N)=log,(8) stages
« 4=N/2=8/2 multiplications in each stage

Penn ESE 531 Spring 2017 — Khanna « 15t stage has trivial multiplication
Adapted from M. Lustig, EECS Berkeley 52

Adapted from M. Lustig, EECS Berkeley 49
¢ Decimation-in-Time FFT
This is illustrated in the following table for N = 8.
Decimal | Binary | Bit-Reversed Binary | Bit-Reversed Decimal
0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7
Penn ESE 531 Spring 2017 — Khanna
Adapted from M. Lustig, EECS Berkeley 51
¢ Decimation-in-Frequency FFT
The DFT is
N-1
X[k = 3" x[nWiF
n=0
If we only look at the even samples of X[k], we can write k = 2r,
N-1
XA =3 xawy®”
n=0
We split this into two sums, one over the first N/2 samples, and
the second of the last N/2 samples.
(N/2)-1 (N/2)-1
XpA= 3 AaAwWZm+ 3 xln+ N/2WE VA
n=0 n=0
Penn ESE 531 Spring 2017 — Khanna
Adapted from M. Lustig, EECS Berkeley 53

eelsieeels

Decimation-in-Frequency FFT

But Wﬁr("+N/2) — Wl%lm WII\’IN: W’%lm = wm

N/2°
We can then write
(N/2)-1 (N/2)-1
Xl = 3 XaAWEm+ S xln+ Nj2wy VD
n=0 n=0
(N/2)-1 (N/2)-1
= > XAwWim+ Y xin+ N2WET
=0 =0
(N/2)-1
= > (xlal+xln+N/2) Wi,
n=0
This is the N/2-length DFT of first and second half of x[n]
summed.
Penn ESE 531 Spring 2017 — Khanna
Adapted from M. Lustig, EECS Berkeley 54




oelsiese’s

Decimation-in-Frequency FFT

X[2r]
X[2r+1]

DFT% {(x[n] + x[n + N/2])}
DF T {(x[n] — xln + N/2]) Wi}

(By a similar argument that gives the odd samples)

Penn ESE 531 Spring 2017 — Khanna
Adapted from M. Lustig, EECS Berkeley 55

oelsiese’s

Decimation-in-Frequency FFT

X|2r]
X2r+1]

DFT% {(x[n] + x[n + N/2])}
DF T {(xln] — xln + N/2]) W5}

(By a similar argument that gives the odd samples)

Continue the same approach is applied for the N/2 DFTs, and the
N/4 DFT's until we reach simple butterflies.

Penn ESE 531 Spring 2017 — Khanna
Adapted from M. Lustig, EECS Berkeley 56

seseees

Decimation-in-Frequency FFT

The diagram for and 8-point decimation-in-frequency DFT is as

follows
x(1]

e X4
x2] X2
AN
x3] (& X[6]
w0 1 -1
x[5] d X[5]
21 w2 Wi
x[6] X[3]
] 3 o 1
wy W,
1 - ///?\y N2 So s

This is just the decimation-in-time algorithm reversed!
The inputs are in normal order, and the outputs are bit reversed.

Penn ESE 531 Spring 2017 — Khanna
Adapted from M. Lustig, EECS Berkeley 57

seseees

Example 1:

A long periodic sequence x of period N =2"(r is an integer) is to be convolved with a
finite-length sequence 4 of length K.

(a) Show that the output y of this convolution (filtering) is periodic; what is its period?

Penn ESE 531 Spring 2017 - Khanna 58

Example 1:

eelsieeels

A long periodic sequence x of period N =2"(r is an integer) is to be convolved with a
finite-length sequence 4 of length K.
(a) Show that the output y of this convolution (filtering) is periodic; what is its period?
(b) Let K =mN where m is an integer; N is large. How would you implement this
convolution efficiently? Explain your analysis clearly.
Compare the total number of multiplications required in your scheme to that in the
direct implementation of FIR filtering. (Consider the case »=10, m=10).

Penn ESE 531 Spring 2017 - Khanna 59

Example 2:

eelsieeels

A sequence x ={x[n],n=0,1,..,N -1} is given; let X(¢/*) be its DTFT.

(a) Suppose N =10. You want to evaluate both X(e’>*”"'?) and X(e/>***). The only
computation you can perform is one DFT, on any one input sequence of your choice.
Can you find the desired DTFT values? (Show your analysis and explain clearly.)

Penn ESE 531 Spring 2017 - Khanna 60
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Example 2:

oelsiese’s

A sequence x ={x[n],n=0,1,..., N -1} is given; let X(ej"’) be its DTFT.

(a) Suppose N =10. You want to evaluate both X(e’>*"'?) and X(e’>***). The only
computation you can perform is one DFT, on any one input sequence of your choice.
Can you find the desired DTFT values? (Show your analysis and explain clearly.)

(b) Suppose N is large. You want to obtain X (e’“) at the following 2M frequencies:
2 2 2z
o=—m, m=0,1,.,M-1 and o=—m+—, m=0,1,..,.M-1.
M M N
Here M =2 < N=2"
A standard radix-2 FFT algorithm is available. You may execute the FFT algorithm
once or more than once, and multiplications and additions outside of the FFT are
allowed, if necessary.
You want to get the 2M DTFT values with as few total multiplications as possible
(including those in the FFT). Give explicitly the best method you can find for this,
with an estimate of the total number of multiplications needed in terms of M and N .

Does your result change if extra multiplications outside of FFTs are not allowed?

Penn ESE 531 Spring 2017 - Khanna 61

Big Ideas

oelsiese’s

0 Discrete Fourier Transform (DFT)
= For finite signals assumed to be zero outside of defined length
= N-point DFT is sampled DTFT at N points
= Useful properties allow easier linear convolution
o Fast Convolution Methods
= Use circular convolution (i.e DFT) to perform fast linear convolution
« Overlap-Add, Overlap-Save
= Circular convolution is linear convolution with aliasing
o Fast Fourier Transform
= Enable computation of an N-point DFT (or DFT"!) with the order
of just N -log, N complex multiplications.

0 Design DSP systems to minimize computations!

Penn ESE 531 Spring 2017 — Khanna
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Admin

seseees

o Project
s Due 4/25
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