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Previously

0 Today
= DTFT, DFT, FFT practice

= Compressive Sampling/Sensing
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Example 2:

A sequence x ={x[n],n=0,1,...,N —1} is given; let X(ej’”) be its DTFT.

(a) Suppose N =10. You want to evaluate both X(e’/?*""'?) and X (e/****). The only

computation you can perform is one DFT, on any one input sequence of your choice.
Can you find the desired DTFT values? (Show your analysis and explain clearly.)
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Example 2:

A sequence x ={x[n],n=0,1,...,N -1} is given; let X(ej‘”) be its DTFT.

(a) Suppose N =10. You want to evaluate both X(e’/?*""'?) and X (e/****). The only

computation you can perform is one DFT, on any one input sequence of your choice.
Can you find the desired DTFT values? (Show your analysis and explain clearly.)

(b) Suppose N is large. You want to obtain X (/) at the following 2M frequencies:
a)=2—ﬂm, m=0,1,.,M-1 and a)=2—”m+2—”, m=0,1,..M-1.
M M N

Here M =2« N=2"

A standard radix-2 FFT algorithm is available. You may execute the FFT algorithm
once or more than once, and multiplications and additions outside of the FFT are
allowed, if necessary.

You want to get the 2M DTFT values with as few total multiplications as possible
(including those in the FFT). Give explicitly the best method you can find for this,
with an estimate of the total number of multiplications needed in terms of M and N .
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Example 2:

A sequence x ={x[n],n=0,1,...,N -1} is given; let X(ej‘”) be its DTFT.

(a) Suppose N =10. You want to evaluate both X(e’/?*""'?) and X (e/****). The only

computation you can perform is one DFT, on any one input sequence of your choice.
Can you find the desired DTFT values? (Show your analysis and explain clearly.)

(b) Suppose N is large. You want to obtain X (e’®) at the following 2M frequencies:

a)=2—ﬂm, m=0,1,.,M-1 and a)=2—”m+2—”, m=0,1,.,M-1.
M M N

Here M =2 <« N=2"

A standard radix-2 FFT algorithm is available. You may execute the FFT algorithm
once or more than once, and multiplications and additions outside of the FFT are
allowed, if necessary.

You want to get the 2M DTFT values with as few total multiplications as possible
(including those in the FFT). Give explicitly the best method you can find for this,
with an estimate of the total number of multiplications needed in terms of M and N .

Does your result change if extra multiplications outside of FFTs are not allowed?
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Compressive Sampling
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Compressive Sampling

Anythin
. ything —
0
a0 What is the rate you need to sample at?
= At least Nyquist
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Compressive Sampling

Something
| Tt
0
a0 What is the rate you need to sample at?
= Maybe less than Nyquist...
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First: Compression

0 Standard approach

= First collect, then compress

s Throw away unnecessary data

é )
1001101001101
0001001110101
0100110100010
0010101101010
1010101100101
1101110111010
1010110110110

10100111111
g J/

G%‘fg?imm] (—(Compr‘ession
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First: Compression

0 Examples

s Audio — 10x
= Raw audio: 44.1kHz, 16bit, stereo = 1378 Kbit/sec
s MP3: 44.1kHz, 16 bit, stereo = 128 Kbit/sec

= Images — 22x

= Raw image (RGB): 24bit/pixel

= JPEG: 1280x960, normal = 1.09bit/pixel
s Videos — 75x

= Raw Video: (480x360)p/frame x 24b/p x 24frames/s + 44.1kHz
x 16b x 2 = 98,578 Kbit/s

« MPEG4: 1300 Kbit/s
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First: Compression

0 Almost all compression algorithm use transform
coding
= mp3: DCT
= JPEG: DCT
= JPEG2000: Wavelet
s MPEG: DCT & time-difference
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First: Compression

0 Almost all compression algorithm use transform
coding
= mp3: DCT
= JPEG: DCT
= JPEG2000: Wavelet
s MPEG: DCT & time-difference
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First: Compression

0 Almost all compression algorithm use transform
coding
= mp3: DCT
= JPEG: DCT

s JPEG2000: Wavelet -
s MPEG: DCT & time-difference
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: Sparse Transtform
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Sparse Transform
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Compressive Sensing/Sampling

0 Standard approach

= First collect, then compress

s Throw away unnecessary data

4 D
1001101001101
0001001110101
0100110100010
0010101101010
1010101100101
1101110111010
1010110110110
10100111111

101000110100
1101011

(—[Compr‘ession
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Compressive Sampling

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in some cases
exactly recover
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Compressive Sampling

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in some cases
exactly recover

Sparse signal in time Frequency spectrum

|

0 10 20 30 40 50 60 0 0.5 1 1.5 2 25 3 35 4
Time (s) Frequency (Hz)



Compressive Sampling

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in some cases
exactly recover

Undersampled in time

0 10 20 30 40 50 60
Time (s)
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Compressive Sampling

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in some cases
exactly recover

Undersampled in time
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Time (s) 0 0.5 1 1.5 2 2.5 3 35
Frequency (Hz)
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Compressive Sampling

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in some cases
exactly recover

Undersampled in frequency

ndersampled in time = .
Undersampled (reconstructed in time with IFFT)

0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time (s) Time (s)
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Compressive Sampling

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in some cases

exactly recover

Undersampled in time

|

Undersampled in frequency
(reconstructed in time with IFFT)
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Requires sparsity and
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incoherent sampling
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Compressive Sampling

Input signal with undersampled measurements circled (~17.5% of N*,rqwst samples)
4 1

<l et o] n‘ ‘: G s L
E Jéi%!!l;'%! i‘l“” il“'i] il Ir'i'»li]‘ “ “'ﬂ ;li!! J.!a 1" i 'ﬁlﬂw
[oB 4 | .‘" ! :
= 2 rﬂﬁ ll‘{[ "'1':[? t '|I| ]. ‘ ur .5!'!' i E | ‘ iw ‘!}1»
Ch 1A
I a 1 1 | 1 C‘) 1
“o 1 2 3 p 5 6 7 8 10
Time (s)
Frequency spectrum of input
0 T T T T T T
@
_20_
=
g,40 ||i‘ ]
5
o
_50_
80 2 a : 5 10 22 ey " 1 20

Frequency (Hz)

0 Sense signal randomly M
times

s M>C u?(®d,¥Y)SlogN
0 Recover with linear
program

minZIQ(w)I subjectto g(t,,) = f(t,), m=1,..,M
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Compressive Sampling

Input signal with undersampled measurements circled (~17.5% of N*,rqwst samples)
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0 Recover with linear
program
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Compressive Sampling: Simple Example
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Example: Sum of Sinusoids

Power (dB)
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0 Two relevant “knobs”

= percentage of Nyquist
samples as altered by

adjusting optimization
factor, C
= 1nput signal duration, T

= Data block size
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: Example: Increasing C
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“xample: Increasing C

(mHz)
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Example: Increasing T

Power (dB)
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“xample: Increasing T
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Power (uW)

Power (uW)

Biometric Example:

’—

Parkinson’s Tremors
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0 6 Subjects of real tremor
data

= collected using low intensity
velocity-transducing laser
recording aimed at reflective
tape attached to the subjects’
tinger recording the finger
velocity

m All show Parkinson’s tremor
in the 4-6 Hz range.

= Subject 8 shows activity at
two higher frequencies

= Subject 4 appears to have two
tremors very close to each
other in frequency
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Real Data

Compressive Sampling

Recovered Frequency Spectrum: Subject |

Time Signal: Subject B

Recovered Frequency Spectrum; Subject 8

Time Signal: Subject 8
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: Biometric Example: Parkinson’s Tremors
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Biometric Example: Parkinson’s

’—

‘remors

-

Freguency error in tremor detection
T

Subject Number

Tremors detected
within 100 mHz
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Implementing Compressive Sampling

a0 Devised a way to randomly sample 20% of the Nyquist
required samples and still detect the tremor frequencies
within 100mHz
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Implementing Compressive Sampling

a0 Devised a way to randomly sample 20% of the Nyquist
required samples and still detect the tremor frequencies
within 100mHz

= Requires post processing to randomly sample!
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Implementing Compressive Sampling

a0 Devised a way to randomly sample 20% of the Nyquist
required samples and still detect the tremor frequencies
within 100mHz

= Requires post processing to randomly sample!

a0 Implement hardware on chip to “choose” samples in real
time
= Only write to memory the “chosen” samples
= Design random-like sequence generator
= Only convert the “chosen” samples

= Design low energy ADC
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Big Ideas

0 Compressive Sampling
= Integrated sensing/sampling, compression and processing

= Based on sparsity and incoherency
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Admin

0 Tania extra office hours
= M 4-6pm

0 Tuesday lecture
= Review

s Final exam details
= Old exam posted

0 Project
s Due 4/25
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