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Compressive Sensing
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Previously

oelsiese’s

o Today
= DTFT, DFT, FFT practice

= Comptessive Sampling/Sensing
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Example 2:

seseees

A sequence x ={x[n), n=0,1,...,N —1} is given; let X(e’®) be its DTFT.

(a) Suppose N =10. You want to evaluate both X(e’2*”'?) and X (e/>***). The only
computation you can perform is one DFT, on any one input sequence of your choice.
Can you find the desired DTFT values? (Show your analysis and explain clearly.)
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A sequence x ={x[n], n=0,1,...,N -1} is given; let X(ef“’) be its DTFT.

() Suppose N =10. You want to evaluate both X(e’>*”"'?) and X (e/>***). The only
computation you can perform is one DFT, on any one input sequence of your choice.
Can you find the desired DTFT values? (Show your analysis and explain clearly.)

(b) Suppose N is large. You want to obtain X (e/”) at the following 2M frequencies:
m=2—”m, m=0,1,..,M -1 and w=2—”m+2—”, m=0,1,..,M-1.
M M N
Here M =2“<«<N=2"

A standard radix-2 FFT algorithm is available. You may execute the FFT algorithm
once or more than once, and multiplications and additions outside of the FFT are
allowed, if necessary.

You want to get the 2M DTFT values with as few total multiplications as possible
(including those in the FFT). Give explicitly the best method you can find for this,
with an estimate of the total number of multiplications needed in terms of M and N .
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Example 2:
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A sequence x ={x[n], n=0,1,..,N -1} is given; let X(e/*) be its DTFT.

(a) Suppose N =10. You want to evaluate both X(e’>*”"'?) and X(e/>***). The only
computation you can perform is one DFT, on any one input sequence of your choice.
Can you find the desired DTFT values? (Show your analysis and explain clearly.)

(b) Suppose N is large. You want to obtain X (e/“) at the following 2M frequencies:
o= 2f”m, m=0,1,.,M-1 and o= 2ilrn +2l, m=0,1,...M-1.
M M N
Here M =2 < N=2"
A standard radix-2 FFT algorithm is available. You may execute the FFT algorithm
once or more than once, and multiplications and additions outside of the FFT are
allowed, if necessary.

You want to get the 2M DTFT values with as few total multiplications as possible
(including those in the FFT). Give explicitly the best method you can find for this,
with an estimate of the total number of multiplications needed in terms of M and N .

Does your result change if extra multiplications outside of FFTs are not allowed?
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Compressive Sampling

Anything

T
0

0 What is the rate you need to sample at?
= At least Nyquist
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oelsiese’s

Compressive Sampling

Something

T
0

0 What is the rate you need to sample at?
= Maybe less than Nyquist. ..
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seseees

First: Compression

o Standard approach

= First collect, then compress

= Throw away unnecessary data

1001101001101
0001001110101

1010101100101
1101110111010
1010110110110
10100111111
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seseees

First: Compression

o Examples

= Audio — 10x
= Raw audio: 44.1kHz, 16bit, stereo = 1378 Kbit/sec
= MP3: 44.1kHz, 16 bit, stereo = 128 Kbit/sec

= Images — 22x
= Raw image (RGB): 24bit/pixel
= JPEG: 1280x960, normal = 1.09bit/pixel

= Videos — 75x
= Raw Video: (480x360)p/frame x 24b/p x 24frames/s + 44.1kHz

x 16b x 2 = 98,578 Kbit/s

= MPEG4: 1300 Kbit/s
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First: Compression

eelsieeels

0 Almost all compression algorithm use transform
coding
= mp3: DCT
=« JPEG: DCT
= JPEG2000: Wavelet
= MPEG: DCT & time-difference
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First: Compression
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0 Almost all compression algorithm use transform
coding
i

= mp3: DCT
s

= JPEG: DCT
= JPEG2000: Wavelet
= MPEG: DCT & time-difference
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Sparse Transform

oelsiese’s
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seseees

Sparse Transform
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seseees

Compressive Sensing/Sampling

o Standard approach

= First collect, then compress

= Throw away unnecessary data

1001101001101
0001001110101
» 1010101100101
1101110111010
1010110110110
10100111111

v Compresswn
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eelsieeels

Compressive Sampling

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in some cases
exactly recover
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Compressive Sampling

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in some cases
exactly recover

Sparse signal in time Frequency spectrum

o ) 0 B & o 05 1 15 2 75 3 5
Time (s) Frequency (H2)
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Compressive Sampling

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in some cases
exactly recover

Undersampled in time
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Compressive Sampling

a Sample at lower than the Nyquist rate and still
accurately recover the signal, and in some cases
exactly recover

Undersampled in time

20

19
: Compressive Sampling
o Sample at lower than the Nyquist rate and still
accurately recover the signal, and in some cases
exactly recover
P Undersampled in frequency
Undersampled in time (reconstructed in time with IFFT)
21

eelsieeels

Compressive Sampling

Input signal with undersampled measurements circled (~17.5% of Nyquist samples)

0 Sense signal randomly M
times

| f IlM ﬁf* i

© Timets = M>CuX(®P,¥)SlogN

Frequency spectrun o input

Mm/

e

o Recover with linear
program

Mﬁm

Froquoncy ()

minZIQ(m)I subjectto g(tn) = ftm), Mm=1,.,M
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seseees

Compressive Sampling

o Sample at lower than the Nyquist rate and still
accurately recover the signal, and in some cases
exactly recover

Undersampled in frequency

Undersampled in time (reconstructed in time with IFFT)

0 R R N R ] L —

o w0
Time s)

%
Time (5)

Requires sparsity and incoherent sampling
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eelsieeels

Compressive Sampling

K X
F
fw)= E ad(w—w) Sf() = E el
Input signal with undersampled measurements circled (~17.5% of Nyquist samples) vt -
i= i=

Ampitude.

0 Sense signal randomly M
o] | times
N : s M>CuXP,¥)Slog N

Freauency spectun of nput

I
\1\ w‘” <\ "'"“"'www N

0 Recover with linear
Pngfam

Pawer (aBl

®
¥ e e 8w % w e »
Frequency (Hz)

min ) 1g@)|  subjectto g(tw) = f(Em), m=1,..,M
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Compressive Sampling: Simple Example
E
x
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!
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Example: Increasing C
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Example: Increasing T

29

Example: Sum of Sinusoids
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0 Two relevant “knobs”
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= per gc of Nyquist
sai mpl altered by
adjust 1, optimization
fffffff
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Example: Increasing C

ectrum performance for increasing samples

* forrmax Within 10 mHz

5 * Permax decreasing
£
e % % 6 %
Percentage of Nyquistsamples ~ Percentage of Nyquist samples
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¢ Example: Increasing T
.
Re rmance
W aceloriereashoT
H " * forrmax decreasing
| # ® Perrmax decreasing
iR g
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Biometric Example: Parkinson’s Tremors

Compressive Sampling: Real Data

Time Signak: Subject & o Subject|

Frequency (Hz) Tie (5) Frequency (Hz)
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Biometric Example: Parkinson’s Tremors

Frequency error in tremor detection

" Tremors detected
I within 100 mHz

5 g
‘Subject Number

34

Subject 2 ps, Sublects s, SUblectS 3 6 Subjects of real tremor
s 06 data
W
£ S0 £ - = collected using low intensity
3 F S velocity-transducing laser
H & & recording aimed at reflective
os or | I tape attached to the subjects’
finger recording the finger
" o = w velocity
Frequency (Hz) Frequency (Hz) Frequency (Hz) Al thows Parkinson’
Subject & Subject 7 Subject 8 . (;c‘;"’ﬁ 1_3[‘ :‘;;‘:i‘ s tremor
o 6 Ha range.
os oa « Subject 8 shows activity at
_os _ o) _ two higher frequencies
s s e
Zos I = « Subject 4 appears to have two
- 3o H 202 tremors very close (0 ach
=02 = o0s = o other in frequency
° i
= w AN 5w
Frequency (Hz) Frequency (Hz) Frequency (Hz)
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¢ Biometric Example: Parkinson’s Tremors
:
N ]
) H‘i‘i\‘\‘“‘ | u
=l L ‘ h
AT '| M\Ml\ \IW I
) -1 0 ‘L 1l
" C=10.5, T=30
20% Nyquist required samples
33
: . . .
¢ Implementing Compressive Sampling
.
:
0 Devised a way to randomly sample 20% of the Nyquist
required samples and still detect the tremor frequencies
within 100mHz
35

Implementing Compressive Sampling

0 Devised a way to randomly sample 20% of the Nyquist
required samples and still detect the tremor frequencies
within 100mHz

= Requires post processing to randomly sample!
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Implementing Compressive Sampling

0 Devised a way to randomly sample 20% of the Nyquist
required samples and still detect the tremor frequencies

within 100mHz

= Requires post processing to randomly sample!

o Implement hardware on chip to “choose” samples in real
time
= Only write to memory the “chosen” samples
= Design random-like sequence generator
= Only convert the “chosen” samples

= Design low energy ADC

oelsiese’s

Big Ideas

o Compressive Sampling
= Integrated sensing/sampling, compression and processing

= Based on sparsity and incoherency

seseees

Admin

0 Tania extra office hours
= M 4-6pm
0 Tuesday lecture
= Review
s Final exam details
« Old exam posted

o Project
s Due 4/25




