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ESE 531: Digital Signal Processing 

Lec 24:  April 25, 2017 
Review 

Penn ESE 531 Spring 2017 - Khanna 

Course Content 

!  Introduction 
!  Discrete Time Signals & Systems 
!  Discrete Time Fourier 

Transform 
!  Z-Transform 
!  Inverse Z-Transform 
!  Sampling of Continuous Time 

Signals 
!  Frequency Domain of Discrete 

Time Series 
!  Downsampling/Upsampling 
!  Data Converters, Sigma Delta 

Modulation 

!  Oversampling, Noise Shaping 
!  Frequency Response of LTI 

Systems 
!  Basic Structures for IIR and FIR 

Systems 
!  Design of IIR and FIR Filters 
!  Filter Banks 
!  Adaptive Filters 
!  Computation of the Discrete 

Fourier Transform 
!  Fast Fourier Transform 
!  Compressive Sampling 
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Digital Signal Processing 

!  Represent signals by a sequence of numbers 
"  Sampling and quantization (or analog-to-digital conversion) 

!  Perform processing on these numbers with a digital processor 
"  Digital signal processing 

!  Reconstruct analog signal from processed numbers 
"  Reconstruction or digital-to-analog conversion 

•  Analog input # analog output 
•  Eg. Digital recording music 

•  Analog input # digital output 
•  Eg. Touch tone phone dialing, speech to text 

•  Digital input # analog output 
•  Eg. Text to speech 

•  Digital input # digital output 
•  Eg. Compression of a file on computer 

A/D DSP D/A analog 
signal 

analog 
signal 

digital 
signal 

digital 
signal 
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Discrete Time Signals 
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Signals are Functions 
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Discrete Time Systems 
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System Properties 

!  Causality 
"  y[n] only depends on x[m] for m<=n 

!  Linearity 
"  Scaled sum of arbitrary inputs results in output that is a scaled sum of 

corresponding outputs 
"  Ax1[n]+Bx2[n] # Ay1[n]+By2[n] 

!  Memoryless 
"  y[n] depends only on x[n] 

!  Time Invariance 
"  Shifted input results in shifted output 

"  x[n-q] # y[n-q] 

!  BIBO Stability 
"  A bounded input results in a bounded output (ie. max signal value 

exists for output if max ) 
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LTI Systems 
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!  LTI system can be completely characterized by its impulse 
response 

 
!  Then the output for an arbitrary input is a sum of  weighted, 

delay impulse responses 
 

y[n]= x[n]∗h[n]

Convolution 

Discrete Time Fourier Transform 

DTFT Definition 
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X (e jω ) = x[k]
k=−∞

∞

∑ e− jωk

x[n]= 1
2π

X (e jω
−π

π

∫ )e jωndω

X ( f ) = x[k]
k=−∞

∞

∑ e− j2π fk

x[n]= X ( f
−0.5

0.5

∫ )e j2π fndf
Alternate 

Example: Window DTFT 
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W (e jω ) = w[k]
k=−∞

∞

∑ e− jωk

= e− jωk
k=−N

N

∑
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Example: Window DTFT  
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W (e jω ) =
sin (N +1 2)ω( )
sin ω 2( )

=1 why? 

Also, Σx[n] 

Plot for N=2 

LTI System Frequency Response 

!  Fourier Transform of impulse response 
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H (e jω ) = h[k]
k=−∞

∞

∑ e− jωk

LTI System x[n]=ejωn y[n]=H(ejωn)ejωn 

z-Transform 
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!  The z-transform generalizes the Discrete-Time 
Fourier Transform (DTFT) for analyzing infinite-
length signals and systems  

!  Very useful for designing and analyzing signal 
processing systems  

!  Properties are very similar to the DTFT with a few 
caveats 

Complex Exponentials as Eigenfunctions 
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H (z)znzn

H (z)zn

Region of Convergence (ROC) 
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Formal Properties of the ROC 

!  PROPERTY 1:  
"  The ROC will either be of the form 0 < rR < |z|, or |z| < rL < ∞, 

or, in general the annulus, i.e., 0 < rR < |z| < rL< ∞.  

!  PROPERTY 2:  
"  The Fourier transform of x[n] converges absolutely if and only if the 

ROC of the z-transform of x[n] includes the unit circle.   

!  PROPERTY 3:  
"  The ROC cannot contain any poles.  

!  PROPERTY 4:  
"  If x[n] is a finite-duration sequence, i.e., a sequence that is zero except in 

a finite interval -∞ < N1 < n < N2 < ∞, then the ROC is the entire z-
plane, except possibly z = 0 or z = ∞.  
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Formal Properties of the ROC 

!  PROPERTY 5:  
"  If x[n] is a right-sided sequence, the ROC extends outward from the 

outermost finite pole in X(z) to (and possibly including) z = ∞.  

!  PROPERTY 6:  
"  If x[n] is a left-sided sequence, the ROC extends inward from the 

innermost nonzero pole in X(z) to (and possibly including) z=0.  

!  PROPERTY 7: 
"   A two-sided sequence is an infinite-duration sequence that is neither 

right sided nor left sided. If x[n] is a two-sided sequence, the ROC 
will consist of a ring in the z-plane, bounded on the interior and 
exterior by a pole and, consistent with Property 3, not containing any 
poles.  

!  PROPERTY 8:  
"  The ROC must be a connected region.  
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Inverse z-Transform 

!  Ways to avoid it: 
"  Inspection (known transforms)  
"  Properties of the z-transform  
"  Power series expansion  
"  Partial fraction expansion  
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Partial Fraction Expansion 

!  Let 

!  M zeros and N poles at nonzero locations 
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X (z) =
bk z

−k

k=0

M

∑

ak z
−k

k=0

N

∑
=

zN bk z
M−k

k=0

M

∑

zM ak z
N−k

k=0

N

∑

Partial Fraction Expansion 

!  If M<N and the poles are 1st order 

!  where 
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X (z) =
b0
a0

(1− ck z
−1)

k=1

M

∏

(1− dk z
−1)

k=1

N

∏
=

Ak
1− dk z

−1
k=1

N

∑

Ak = (1− dk z
−1)X (z)

z=dk

Example: 2nd-Order z-Transform 

!  2nd-order = two poles 
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X (z) = −1

1− 1
4
z−1⎛

⎝
⎜

⎞

⎠
⎟

+
2

1− 1
2
z−1⎛

⎝
⎜

⎞

⎠
⎟

,        ROC = z :  1
2
< z

⎧
⎨
⎩

⎫
⎬
⎭

Right sided 

x[n]= − 1
4
⎛

⎝
⎜
⎞

⎠
⎟

n

u[n]+ 2 1
2
⎛

⎝
⎜
⎞

⎠
⎟

n

u[n]

Partial Fraction Expansion 

!  If M≥N and the poles are 1st order 

!  Where Bk is found by long division 
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X (z) = Brz
−r

r=0

M−N

∑ +
Ak

1− dk z
−1

k=1

N

∑

Ak = (1− dk z
−1)X (z)

z=dk
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Example: Partial Fractions 

!  M=N=2 and poles are first order 
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X (z) = B0 +
A1

1− 1
2
z−1

+
A2

1− z−1
,        ROC = z :  1< z{ }

1
2
z−2 −

3
2
z−1 +1 z−2 + 2z−1 +1

z−2 −3z−1 + 2

         5z−1 −1

2

X (z) = 2+ −1+5z−1

(1− 1
2
z−1)(1− z−1)

Example: Partial Fractions 

!  M=N=2 and poles are first order 
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X (z) = 2− 9

1− 1
2
z−1

+
8

1− z−1
,        ROC = z :  1< z{ }

x[n]= 2δ[n]−9 1
2
⎛

⎝
⎜
⎞

⎠
⎟

n

u[n]+8u[n]

Power Series Expansion 

!  Expansion of the z-transform definition 
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X (z) = x[n]z−n
n=−∞

∞

∑

=!+ x[−2]z2 + x[−1]z + x[0]+ x[1]z−1 + x[2]z−2 +!

Example: Finite-Length Sequence 

!  Poles and zeros? 
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X (z) = z2 1− 1
2
z−1

⎛

⎝
⎜

⎞

⎠
⎟(1+ z−1)(1− z−1)

= z2 − 1
2
z −1+ 1

2
z−1

X (z) = x[n]z−n
n=−∞

∞

∑

=!+ x[−2]z2 + x[−1]z + x[0]+ x[1]z−1 + x[2]z−2 +!

x[n]=

1, n = −2
−1 2, n = −1
−1, n = 0
1 2, n =1
0, else

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

Example: Finite-Length Sequence 

!  Poles and zeros? 
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X (z) = z2 1− 1
2
z−1

⎛

⎝
⎜

⎞

⎠
⎟(1+ z−1)(1− z−1)

= z2 − 1
2
z −1+ 1

2
z−1

x[n]=

1, n = −2
−1 2, n = −1
−1, n = 0
1 2, n =1
0, else

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

= δ[n+ 2]− 1
2
δ[n+1]−δ[n]+ 1

2
δ[n−1]

Difference Equation to z-Transform 
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ak y[n− k]
k=0

N

∑ = bmx[n−m]
m=0

M

∑

y[n]= −
ak
a0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ y[n− k]

k=1

N

∑ +
bk
a0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟x[n−m]

k=0

M

∑

!  Difference equations of this form behave as causal 
LTI systems  
"  when the input is zero prior to n=0 
"  Initial rest equations are imposed prior to the time when 

input becomes nonzero 
"  i.e y[-N]=y[-N+1]=…=y[-1]=0  
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Difference Equation to z-Transform 
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y[n]= −
ak
a0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ y[n− k]

k=1

N

∑ +
bk
a0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟x[n−m]

k=0

M

∑

Y (z) = −
ak
a0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ z

−kY (z)
k=1

N

∑ +
bk
a0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ z

−k X (z)
k=0

M

∑

ak
a0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ z

−kY (z)
k=0

N

∑ =
bk
a0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ z

−k X (z)
k=0

M

∑ ⇒Y (z) =
bk( ) z−k

m=0

M

∑

ak( ) z−k
k=0

N

∑
X (z)

H (z) =
bk( ) z−k

m=0

M

∑

ak( ) z−k
k=0

N

∑

Example: 1st-Order System 
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H (z) =
bk( ) z−k

m=0

M

∑

ak( ) z−k
k=0

N

∑
y[n]= ay[n−1]+ x[n]

H (z) = 1
1− az−1

h[n]= anu[n]

Sampling 
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DSP System 
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Ideal Sampling Model 
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!  Ideal continuous-to-discrete time (C/D) converter 
"  T is the sampling period 
"  fs=1/T is the sampling frequency 
"  Ωs=2π/T 

Ideal Sampling Model 
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Frequency Domain Analysis 
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Xs (e
jΩ)

Ωs

2
⋅T = π

ω =ΩT

Frequency Domain Analysis 
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Xs (e
jΩ)

Ωs

2
⋅T = π

ω =ΩT

Aliasing Example 
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Reconstruction of Bandlimited Signals 

!  Nyquist Sampling Theorem:  Suppose xc(t) is 
bandlimited.  I.e. 

!  If Ωs≥2ΩN, then xc(t) can be uniquely determined 
from its samples x[n]=xc(nT) 

!  Bandlimitedness is the key to uniqueness 
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Mulitiple signals go through 
the samples, but only one is 

bandlimited within our 
sampling band 

Reconstruction in Frequency Domain 
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Reconstruction in Time Domain 
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* 

= 
The sum of “sincs” 

gives xr(t) # unique 
signal that is 

bandlimited by 
sampling bandwidth 
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Anti-Aliasing Filter 
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DT and CT processing 

Discrete-Time Processing of Continuous Time 
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x[n] y[n] 

X (e jω ) = 1
T

Xc j
ω
T
−
2πk
T

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥

k=−∞

∞

∑

T T 

yr (t) = y[n] sin[π (t − nT ) /T ]
π (t − nT ) /Tn=−∞

∞

∑

!  If  xc(t) is bandlimited by Ωs/T=π/T, then, 
  Yr ( jΩ)

Xc ( jΩ)
= Heff ( jΩ) =

H (e jω )
ω=ΩT

Ω <Ωs /T

0 else

⎧
⎨
⎪

⎩⎪

Impulse Invariance 

!  Want to implement continuous-time system in 
discrete-time 
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Impulse Invariance 

!  With Hc(jΩ) bandlimited, choose 

!  With the further requirement that T be chosen such 
that 
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H (e jω ) = Hc ( jω /T ),     ω < π

Hc ( jΩ) = 0,     Ω ≥ π /T

h[n]=Thc (nT )

Continuous-Time Processing of Discrete-Time  

!  Useful to interpret DT systems with no simple 
interpretation in discrete time 
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yc (t) = y[n] sin[π (t − nT ) /T ]
π (t − nT ) /Tn=−∞

∞

∑

xc (t) = x[n] sin[π (t − nT ) /T ]
π (t − nT ) /Tn=−∞

∞

∑
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Example: Non-integer Delay 

!  What is the time domain operation when Δ is non-
integer?  I.e Δ=1/2 
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!  My delay system has an impulse response of a sinc 
with a continuous time delay 
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Example: Non-integer Delay 

Rate Sampling 
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Downsampling 

!  Definition:  Reducing the sampling rate by an 
integer number 
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Example 
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4π 2π 

Example 
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6π 4π 2π 
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Example 
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Upsampling 

!  Definition:  Increasing the sampling rate by an 
integer number 
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x[n]= xc (nT )
xi[n]= xc (nT ')

Upsampling 
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xi[n]

Example 
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Non-integer Sampling 

!  T’=TM/L 
"  Upsample by L, then downsample by M 
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interpolator decimator 

Interchanging Operations 
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Upsampling 
-expanding in time 
-compressing in frequency 

Downsampling 
-compressing in time 
-expanding in frequency 
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Interchanging Operations - Summary 
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Filter and expander Expander and expanded filter* 

Compressor and filter Expanded filter* and compressor 

*Expanded filter = expanded impulse response, compressed freq response 

Polyphase Decomposition 
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Polyphase Implementation of Decimator 
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interpolator decimator 

Polyphase Implementation of Interpolation 
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interpolator decimator 

E0(z) 

E0(z) 

E0(z) 

Multi-Rate Filter Banks 

!  Use filter banks to operate on a signal differently in 
different frequency bands 
"  To save computation, reduce the rate after filtering 

!  h0[n] is low-pass, h1[n] is high-pass 
"  Often h1[n]=ejπnh0[n] $ shift freq resp by π 
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Perfect Reconstruction non-Ideal Filters 

66 Penn ESE 531 Spring 2017 - Khanna 
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Quadrature Mirror Filters 
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Quadrature mirror filters 

Data Converters 
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Oversampled ADC 
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Sampling and Quantization 
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Quantization Error 

!  Model quantization error as noise  

 

!  In that case: 

71 Penn ESE 531 Spring 2017 - Khanna 

Signal-to-Quantization-Noise Ratio 

72 

!  Assuming full-scale sinusoidal input, we have 

Penn ESE 531 Spring 2017 - Khanna 



13 

Quantization Noise with Oversampling 
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Practical DAC 

!  Scaled train of sinc pulses  
!  Difficult to generate sinc # Too long! 
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Practical DAC 

!  h0(t) is finite length pulse # easy to implement  
!  For example: zero-order hold 
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Practical DAC 
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Noise Shaping 

!  Idea: "Somehow" build an ADC that has most of its 
quantization noise at high frequencies  

!  Key: Feedback 
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Frequency Response of Systems 

Penn ESE 531 Spring 2017 - Khanna 78 
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Frequency Response of LTI System 

!  We can define a magnitude response 

!  And a phase response 

79 

Y e jω( ) = H e jω( ) X e jω( )

Y e jω( ) = H e jω( ) X e jω( )

∠Y e jω( ) =∠H e jω( )+∠X e jω( )

Penn ESE 531 Spring 2017 – Khanna 
Adapted from M. Lustig, EECS Berkeley 

Group Delay 

!  General phase response at a given frequency can be 
characterized with group delay, which is related to 
phase 

80 

ω
ω1 ω2

- slope Penn ESE 531 Spring 2017 – Khanna 
Adapted from M. Lustig, EECS Berkeley 

LTI System 

!  Transfer function is not unique without ROC 
"  If diff. eq represents LTI and causal system, ROC is 

region outside all singularities 
"  If diff. eq represents LTI and stable system, ROC 

includes unit circle in z-plane 
81 Penn ESE 531 Spring 2017 - Khanna 

Stable and causal 
if all poles inside 

unit circle 

General All-Pass Filter 

!  dk=real pole, ek=complex poles paired w/ 
conjugate, ek

* 
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Minimum-Phase Systems 

!  Definition: A stable and causal system H(z) (i.e. 
poles inside unit circle) whose inverse 1/H(z) is also 
stable and causal (i.e. zeros inside unit circle) 
"  All poles and zeros inside unit circle 
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H(z) 1/H(z) 

Min-Phase Decomposition Purpose 

!  Have some distortion that we want to compensate 
for: 

!  If Hd(z) is min phase, easy: 
"  Hc(z)=1/Hd(z)  $ also stable and causal 

!  Else, decompose Hd(z)=Hd,min(z) Hd,ap(z) 
"  Hc(z)=1/Hd,min(z) #Hd(z)Hc(z)=Hd,ap(z) 

"  Compensate for magnitude distortion 

84 Penn ESE 531 Spring 2017 - Khanna 
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Generalized Linear Phase 

!  An LTI system has generalized linear phase if 
frequency response               can be expressed as: 

!  Where A(ω) is a real function. 

!  What is the group delay? 
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FIR GLP: Type I and II 
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FIR GLP: Type III and IV 
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Zeros of GLP System 

!  FIR GLP System Function 

 
!  If zero is on unit circle (r=1) 

!  If zero is real and not on unit circle (θ=0) 
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FIR Filter Design 

FIR Design by Windowing 

!  Given desired frequency response, Hd(ejω) , find an 
impulse response 

!  Obtain the Mth order causal FIR filter by 
truncating/windowing it 

90 
Penn ESE 531 Spring 2017 – Khanna 
Adapted from M. Lustig, EECS Berkeley 



16 

FIR Design by Windowing 

91 
Penn ESE 531 Spring 2017 – Khanna 
Adapted from M. Lustig, EECS Berkeley 

Tapered Windows 

92 
Penn ESE 531 Spring 2017 – Khanna 
Adapted from M. Lustig, EECS Berkeley 

Tradeoff – Ripple vs. Transition Width 

93 
Penn ESE 531 Spring 2017 – Khanna 
Adapted from M. Lustig, EECS Berkeley 

Characterization of Filter Shape 

94 
Penn ESE 531 Spring 2017 – Khanna 
Adapted from M. Lustig, EECS Berkeley 

Optimality 

!  Least Squares: 

 

!  Variation: Weighted Least Squares: 

95 
Penn ESE 531 Spring 2017 – Khanna 
Adapted from M. Lustig, EECS Berkeley 

Least-Squares Linear Phase Filter 

96 
Penn ESE 531 Spring 2017 – Khanna 
Adapted from M. Lustig, EECS Berkeley 
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Least-Squares 

!  Result will generally be non-symmetric and complex 
valued.  

!  However, if                is real,        should have 
symmetry!  

97 
Penn ESE 531 Spring 2017 – Khanna 
Adapted from M. Lustig, EECS Berkeley 

Min-Max Ripple Design 

!  Recall,             is symmetric and real 
!  Given ωp, ωs, M, find δ,  

!  Formulation is a linear program with solution δ, 
!  A well studied class of problems  

98 
Penn ESE 531 Spring 2017 – Khanna 
Adapted from M. Lustig, EECS Berkeley 

IIR Filter Design 

IIR Filter Design 

!  Transform continuous-time filter into a discrete-
time filter meeting specs 
"  Pick suitable transformation from s (Laplace variable) to z 

(or t to n) 
"  Pick suitable analog Hc(s) allowing specs to be met, 

transform to H(z) 

!  We’ve seen this before… impulse invariance 
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Bilinear Transformation 

!  The technique uses an algebraic transformation 
between the variables s and z that maps the entire 
jΩ-axis in the s-plane to one revolution of the unit 
circle in the z-plane. 
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Transformation of DT Filters 
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Z −1 =G(z−1)
Hlp(Z) 

!  Map Z-plane#z-plane with transformation G 
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General Transformations 
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Adaptive Filters 

!  An adaptive filter is an adjustable filter that 
processes in time 
"  It adapts… 
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Adaptive 
Filter 

Update 
Coefficients 

x[n] y[n] 

d[n] 

e[n]=d[n]-y[n] 

+ _ 

Least-Mean-Square (LMS) Algorithm 

!  The LMS Algorithm consists of two basic processes 
"  Filtering process 

"  Calculate the output of FIR filter by convolving input and taps 
"  Calculate estimation error by comparing the output to desired 

signal 

"  Adaptation process 
"  Adjust tap weights based on the estimation error 
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Discrete Fourier Transform 

Discrete Fourier Transform 

!  The DFT 

!  It is understood that, 
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4 

DFT vs DTFT 

!  Back to example 
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Circular Convolution 

!  For x1[n] and x2[n] with length N 

"  Very useful!!  (for linear convolutions with DFT) 
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Linear Convolution via Circular Convolution 

!  Zero-pad x[n] by P-1 zeros 

!  Zero-pad h[n] by L-1 zeros 

!  Now, both sequences are length M=L+P-1 
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Block Convolution 
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Example of Overlap-Add 
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y

y

y
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L=11 

L+P-1=16 

Example of Overlap-Save 
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L+P-1=16 P-1=5 
Overlap 
samples 

FFT 
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Decimation-in-Time FFT 
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•  3=log2(N)=log2(8)  stages 
•  4=N/2=8/2 multiplications in each stage 

•  1st stage has trivial multiplication 

Decimation-in-Frequency FFT 
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Big Ideas 

!  Fast Fourier Transform 
"  Enable computation of an N-point DFT (or DFT-1) with 

the order of just N· log2 N complex multiplications.  
"  Most FFT algorithms decompose the computation of a DFT into 

successively smaller DFT computations.  
"  Decimation-in-time algorithms  
"  Decimation-in-frequency  

"  Historically, power-of-2 DFTs had highest efficiency 
"  Modern computing has led to non-power-of-2 FFTs with 

high efficiency 
"  Sparsity leads to reduce computation on order K· logN 
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Circular Conv. as Linear Conv. w/ Aliasing 
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!  Therefore 

!  The N-point circular convolution is the sum of 
linear convolutions shifted in time by N 

x3p[n]= x1[n]⊗ x2[n]N 

Big Ideas 
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!  Discrete Fourier Transform (DFT) 
"  For finite signals assumed to be zero outside of defined length 
"  N-point DFT is sampled DTFT at N points 
"  Useful properties allow easier linear convolution 

!  Fast Convolution Methods 
"  Use circular convolution (i.e DFT) to perform fast linear convolution 

"  Overlap-Add, Overlap-Save 

"  Circular convolution is linear convolution with aliasing 

!  Fast Fourier Transform 
"  Enable computation of an N-point DFT (or DFT-1) with the order 

of just N· log2 N complex multiplications.  

!  Design DSP methods to minimize computations! 

Compressive Sensing/Sampling 

!  Standard approach 
"  First collect, then compress  

"  Throw away unnecessary data 
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Undersampled in time 

Compressive Sampling 

!  Sample at lower than the Nyquist rate and still 
accurately recover the signal, and in some cases 
exactly recover 
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Undersampled in frequency 
(reconstructed in time with IFFT) 

Requires sparsity and incoherent sampling 

Final Exam   

!  Final – 5/3 
"  Location TBD 
"  Starts at exactly 3:00pm, ends at exactly 5:00pm (120 minutes) 
"  Closed book 
"  Cumulative – covers entire course 

"  Except data converters, noise shaping, compressive sampling 

"  Data/Equation sheet provided by me 
"  Similar to midterm sheet and old final sheet 

"  8.5x11 cheat sheet allowed 
"  Review session by Shlesh on 5/2, time TBD 
"  Old exams posted 
"  Calculators allowed, no smart phones 

!  Keep an eye on Piazza for office hour additions 
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