University of Pennsylvania Department of Electrical and System Engineering Digital Signal Processing

ESE531, Spring 2017 Midt	erm Thursday, March 16
--------------------------	------------------------

- 3 Problems with point weightings shown. All 3 problems must be completed.
- Calculators allowed.
- Closed book = No text allowed. One two-sided 8.5×11 cheat sheet allowed.
- Final answers here.
- Additional workspace in "blue" book. Note where to find work in "blue" book if relevant.
- Sign Code of Academic Integrity statement at back of "blue" book.

Name:

Common DTFT pairs:

Sequence	DTFT	
$\delta[n]$	1	
u[n]	$\frac{1}{1-e^{-j\omega}} + \sum_{k=-\infty}^{\infty} \pi \delta\left(\omega + 2\pi k\right)$	
1	$\sum_{k=-\infty}^{\infty}2\pi\deltaig(arnothing+2\pi kig)$	
$e^{j \omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi\delta \left(\omega - \omega_0 + 2\pi k\right)$	
$\alpha^n u[n], \alpha < 1$	$\frac{1}{1-lpha e^{-j\omega}}$	
$\frac{\sin(\omega_c n)}{\pi n}$	$X(e^{j\omega}) = \begin{cases} 1, & \omega \le \omega_c \\ 0, & \omega_c < \omega < \pi \end{cases}$	

Common z-transform pairs:

Seque	nce	z-transform	ROC
$\delta[n]$	1	All z	
u[n]	$\frac{1}{1-z^{-1}}$	z > 1	
-u[-n-1]	$\frac{1}{1-z^{-1}}$	z < 1	
$\delta[n-m]$	z^{-m}	All z except 0 (if m>0) or ∞ (if m<0)	
$a^n u[n]$	$\frac{1}{1-az^{-1}}$	z > a	
$-a^n u [-n-1]$	$\frac{1}{1-az^{-1}}$	z < a	
$na^nu[n]$	$\frac{az^{-1}}{\left(1-az^{-1} ight)^2}$	z > a	
$-na^nu[-n-1]$	$\frac{az^{-1}}{\left(1-az^{-1}\right)^2}$	z < a	

Trigonometric Identity:

$$e^{jA} = \cos(A) + j\sin(A)$$

Geometric Series:

$$\sum_{n=0}^{N} r^n = \frac{1 - r^{N+1}}{1 - r}$$
$$\sum_{n=0}^{\infty} r^n = \frac{1}{1 - r}, |r| < 1$$

DTFT Equations:

$$X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} x[k]e^{-j\omega k}$$
$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})e^{j\omega n} d\omega$$

Upsampling/Downsampling: Upsampling by L (†L): $X_{up} = X(e^{j\omega L})$ Downsampling by M (\downarrow M): $X_{down} = \frac{1}{M} \sum_{i=0}^{M-1} X(e^{j(\frac{\omega}{M} - \frac{2\pi}{M}i)})$

1. (40 pts) Consider a causal LTI system defined by the following block diagram:

→ y[n]

denotes multiplication by a scalar α : if the input is w[n], the Above, the symbol output is $\alpha w[n]$. The symbol $[D_1]$ denotes a delay by one sample: if the input is w[n], the output is w[n-1].

(a) What is the impulse response h[n] of the system?

x[n]

(b) For what choices of α is the system stable?

(c) For any α such that the system is stable, what is the frequency response $H(e^{j\omega})$ of the system?

(d) What is the output y[n] when the input is the oscillatory signal $x[n] = (-1)^n$?

2. (30 pts)Below are two systems consisting of a compressor and expander.

(a) For x[n] shown below, sketch $y_a[n]$ and $y_b[n]$ (assume x[n] = 0 outside the range shown).

(b) For $X(e^{j\omega})$ shown below, sketch $W_a(e^{j\omega})$ and $Y_a(e^{j\omega})$.

(c) $X(e^{j\omega})$ is now the Fourier transform of an arbitrary signal x[n]. Express $Y_b(e^{j\omega})$ in terms of $X(e^{j\omega})$. Your answer should be in the form of an equation, not a sketch.

(d) For any arbitrary x[n], will $y_a[n] = y_b[n]$? If your answer is yes, algebraically justify your answer. If your answer is no, clearly explain or show a counterexample.

$$H(z) = \frac{1 - z^{-1}}{1 - 0.5z^{-1}} \tag{1}$$

Consider the cascade configuration given in the figure below. Here we assume that α is a real number.

(a) Draw the pole-zero plot of H(z). Also, sketch the region of convergence. Is this system stable?

(b) Assume that $\alpha = \frac{1}{3}$ and $x[n] = \left(\frac{1}{4}\right)^n u[n]$. Compute the output y[n] for the given input x[n].

(c) Find the response g[n] of the overall system within the enclosed box to the input $x[n] = \delta[n]$.

(d) Plot the pole-zero plot of G(z), the z-transform of g[n]. Also, sketch the region of convergence.