ESE 531 Digital Signal Processing

October 15, 2015

Closed Book/Notes

Mid-Term Exam
1 Hr. 20 Mins

Given Information is on Page 3

Explain the reasoning leading to your answers.

Problem 1

In Figure 1a the LTI system H in the inner box has unit-sample response h. a and b are complex constants.

x[n] $\downarrow \qquad \qquad H$ $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow p^n$ Figure 1a

(a) Suppose $b = \frac{1}{a} = e^{-j\pi}$, and H is an ideal, zerophase LPF with cut-off frequency $\omega_c = \pi/2$. Let x have the DTFT $X(e^{j\omega})$ shown in Figure 1b. Sketch the DTFT of the output y.

(b) Suppose more generally that $b = \frac{1}{a}$ in Figure 1a.

Is the overall system of Figure 1a linear and time-invariant (LTI)? Prove or disprove. (Different approaches are possible for this).

Problem 2

Consider the causal system below:

- (a) Find the transfer function H(z) of the system and determine its poles and zeros.
- (b) Let $\omega_0 = 0$.
 - (i) Does the system have a *causal inverse*? If so, find the *unit-sample response* of the causal inverse.
 - (ii) Can you find a *causal*, *stable* inverse? If not, suggest an *approximate* inverse that is causal and stable. (*Brief answer, no detailed analysis*)

Problem 3

In the system below $H(e^{j\omega}) = \begin{cases} 1, & \text{for } \omega_1 < |\omega| < \omega_2 \\ 0, & \text{elsewhere} \end{cases}$, on $[-\pi, \pi]$

$$\begin{array}{c|c}
x_c(t) & x[n] \\
\hline
 & \uparrow_T
\end{array}$$

$$\begin{array}{c|c}
x_e[n] & H(e^{j\omega}) \\
\hline
 & \downarrow_2
\end{array}$$

(a) Let L = 2, $\underline{\omega_1 = \pi/2}$, $\underline{\omega_2 = \pi}$, and $x_c(t) = \cos\left(\frac{\pi}{3T}t\right)$.

Sketch $X_e(e^{j\omega})$. Find $\{y_e[n]\}$ and the output $\{y[n]\}$.

(b) Consider the case L=4 and $\omega_1=\pi/4$, $\omega_2=3\pi/4$ for the filter. Assume

$$X_{c}(j\omega_{a}) = \begin{cases} 1 - \left|\omega_{a}\right| \frac{T}{\pi}, & \left|\omega_{a}\right| < \frac{\pi}{T} \\ 0, & otherwise \end{cases}$$

Sketch $Y(e^{j\omega})$, labeling key values.

How does the answer change if a *unit-delay* is inserted before the compressor $\downarrow 2$?

Given: For
$$\uparrow L$$
 $X_e(e^{j\omega}) = X(e^{j\omega L})$; for $\downarrow 2$ $Y(e^{j\omega}) = \frac{1}{2}Y_e\left(e^{j\omega/2}\right) + \frac{1}{2}Y_e\left(e^{j\left(\omega-2\pi\right)/2}\right)$

Common DTFT pairs:

Sequence	DTFT	
$\delta[n]$	1	
u[n]	$\frac{1}{1 - e^{-j\omega}} + \sum_{k = -\infty}^{\infty} \pi \delta(\omega + 2\pi k)$	
1	$\sum_{k=-\infty}^{\infty} 2\pi\delta (\omega + 2\pi k)$	
$e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi\delta \left(\omega - \omega_0 + 2\pi k\right)$	
$\alpha^n u[n], \alpha < 1$	$\frac{1}{1-\alpha e^{-j\omega}}$	
$\frac{\sin(\omega_c n)}{\pi n}$	$X(e^{j\omega}) = \begin{cases} 1, & \omega \le \omega_c \\ 0, & \omega_c < \omega < \pi \end{cases}$	

Common z-transform pairs:

Sequence		z-transform	ROC
$\delta[n]$	1	All z	
u[n]	$\frac{1}{1-z^{-1}}$	z > 1	
-u[-n -1]	$\frac{1}{1-z^{-1}}$	z < 1	
$\delta[n-m]$	z^{-m}	All z except 0 (if m>0) or ∞ (if m<0)	
$a^n u[n]$	$\frac{1}{1-az^{-1}}$	z > a	
$-a^nu[-n-1]$	$\frac{1}{1-az^{-1}}$	z < a	
$a^{n}u[n]$ $-a^{n}u[-n-1]$ $na^{n}u[n]$	$\frac{az^{-1}}{\left(1-az^{-1}\right)^2}$	z > a	
$-na^nu[-n-1]$	$\frac{az^{-1}}{\left(1-az^{-1}\right)^2}$	z < a	

Trigonometric Identities:

$$\sin(A - B) = \sin(A)\cos(B) - \cos(A)\sin(B)$$

$$\cos(A - B) = \cos(A)\cos(B) + \sin(A)\sin(B)$$

$$\cos(A) + \cos(B) = 2\cos\left(\frac{A + B}{2}\right)\cos\left(\frac{A - B}{2}\right)$$

$$\cos(A) = \frac{e^{jA} + e^{-jA}}{2}$$

$$\cos(A) = \frac{e^{jA} + e^{-jA}}{2}$$