ESE 531: Digital Signal Processing

Lec 19: March 29, 2018

Discrete Fourier Transform, Pt 2

Today

- □ Review:
 - Discrete Fourier Transform (DFT)
 - Circular Convolution
- Fast Convolution Methods

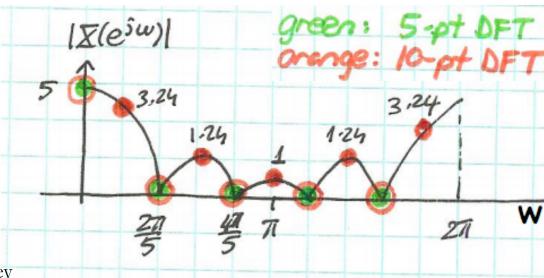
Discrete Fourier Transform

□ The DFT

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] W_N^{-kn} \qquad \text{Inverse DFT, synthesis}$$

$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn} \qquad \text{DFT, analysis}$$

□ It is understood that,


$$x[n] = 0$$
 outside $0 \le n \le N-1$
 $X[k] = 0$ outside $0 \le k \le N-1$

DFT vs DTFT

Back to example

$$X[k] = \sum_{n=0}^{4} W_{10}^{nk}$$

$$= e^{-j\frac{4\pi}{10}k} \frac{\sin(\frac{\pi}{2}k)}{\sin(\frac{\pi}{10}k)}$$

Properties of the DFS/DFT

Discrete Fourier Series			Discrete Fourier Transform		
Property	N-periodic sequence	N-periodic DFS	Property	N-point sequence	N-point DFT
	$\widetilde{x}[n]$ $\widetilde{x}_1[n], \ \widetilde{x}_2[n]$	$\widetilde{X}[k]$ $\widetilde{X}_1[k], \ \widetilde{X}_2[k]$		$x[n]$ $x_1[n], x_2[n]$	$X[k]$ $X_1[k], X_2[k]$
Linearity	$a\widetilde{x}_1[n] + b\widetilde{x}_2[n]$	$a\widetilde{X}_1[k] + b\widetilde{X}_2[k]$	Linearity	$ax_1[n] + bx_2[n]$	$aX_1[k] + bX_2[k]$
Duality	$\widetilde{X}[n]$	$N\widetilde{x}[-k]$	Duality	X[n]	$Nx[((-k))_N]$
Time Shift	$\widetilde{x}[n-m]$	$W_{N}^{km}\widetilde{X}ig[kig]$	Circular Time Shift	$x[((n-m))_N]$	$W_{_{N}}^{^{km}}Xig[kig]$
Frequency Shift	$W_N^{-ln}\widetilde{x}[n]$	$\widetilde{X}[k-l]$	Circular Frequency Shift	$W_N^{-ln}x[n]$	$X\big[\big(\big(k-l\big)\big)_N\big]$
Periodic Convolution	$\sum_{m=0}^{N-1} \widetilde{x}_1 [m] \widetilde{x}_2 [n-m]$	$\widetilde{X}_1[k]\widetilde{X}_2[k]$	Circular Convolution	$\sum_{m=0}^{N-1} x_1 [m] x_2 [((n-m))_N]$	$X_1[k]X_2[k]$
Multiplication	$\widetilde{x}_1[n]\widetilde{x}_2[n]$	$\frac{1}{N}\sum_{l=0}^{N-1}\widetilde{X}_1[l]\widetilde{X}_2[k-l]$	Multiplication	$x_1[n]x_2[n]$	$\frac{1}{N} \sum_{l=0}^{N-1} X_1[l] X_2[((k-l))_N]$
Complex Conjugation	$\widetilde{x}^*[n]$	$\widetilde{X}^*[-k]$	Complex Conjugation	x*[n]	$X^*[((-k))_N]$

Properties (Continued)

Time- Reversal and Complex Conjugation	$\widetilde{x}^*[-n]$	$\widetilde{X}^*[k]$	Time- Reversal and Complex Conjugation	$x^*[((-n))_N]$	$X^*[k]$
Real Part	$\operatorname{Re}\{\widetilde{x}[n]\}$	$\widetilde{X}_{ep}[k] = \frac{1}{2} \left(\widetilde{X}[k] + \widetilde{X}^*[-k] \right)$	Real Part	$\operatorname{Re}\{x[n]\}$	$X_{ep}[k] = \frac{1}{2}(X[k] + X^*[((-k))_N])$
Imaginary Part	$j\operatorname{Im}\{\widetilde{x}[n]\}$	$\widetilde{X}_{op}[k] = \frac{1}{2} \left(\widetilde{X}[k] - \widetilde{X}^*[-k] \right)$	Imaginary Part	$j\operatorname{Im}\{x[n]\}$	$X_{op}[k] = \frac{1}{2} (X[k] - X^*[((-k))_N])$
Even Part	$\widetilde{x}_{ep}[n] = \frac{1}{2} (\widetilde{x}[n] + \widetilde{x}^*[-n])$	$\operatorname{Re}igl\{\widetilde{X}[k]igr\}$	Even Part	$x_{ep}[n] = \frac{1}{2}(x[n] + x^*[((-n))_N])$	$\operatorname{Re}\{X[k]\}$
Odd Part	$\widetilde{x}_{op}[n] = \frac{1}{2} (\widetilde{x}[n] - \widetilde{x}^*[-n])$	$j\operatorname{Im}igl\{\widetilde{X}igl[kigr]igr\}$	Odd Part	$x_{op}[n] = \frac{1}{2}(x[n] - x^*[((-n))_N])$	$j\operatorname{Im}\{Xig[kig]\}$
Symmetry for Real Sequence	$\widetilde{x}[n] = \widetilde{x}^*[n]$	$\widetilde{X}[k] = \widetilde{X}^*[-k]$ $\begin{cases} \operatorname{Re}\{\widetilde{X}[k]\} = \operatorname{Re}\{\widetilde{X}[-k]\} \\ \operatorname{Im}\{\widetilde{X}[k]\} = -\operatorname{Im}\{\widetilde{X}[-k]\} \end{cases}$ $\begin{cases} \widetilde{X}[k] = \widetilde{X}[-k] \\ \angle \widetilde{X}[k] = -\angle \widetilde{X}[-k] \end{cases}$	Symmetry for Real Sequence	$x[n] = x^*[n]$	$X[k] = X^*[((-k))_N]$ $\begin{cases} \operatorname{Re}\{X[k]\} = \operatorname{Re}\{X[((-k))_N]\} \\ \operatorname{Im}\{X[k]\} = -\operatorname{Im}\{X[((-k))_N]\} \end{cases}$ $\begin{cases} X[k]] = X[((-k))_N] \\ \angle X[k] = -\angle X[((-k))_N] \end{cases}$
Parseval's Identity	$\sum_{n=0}^{N-1} \widetilde{x}_1[n]\widetilde{x}_2^*[n] = \frac{1}{N} \sum_{k=0}^{N-1} \widetilde{X}_1[k]\widetilde{X}_2^*[k]$ $\sum_{n=0}^{N-1} \widetilde{x}[n] ^2 = \frac{1}{N} \sum_{k=0}^{N-1} \widetilde{X}[k] ^2$		Parseval's Identity	$\sum_{n=0}^{N-1} x_1[n] x_2^*[n] = \frac{1}{N} \sum_{k=0}^{N-1} X_1[k] X_2^*[k]$ $\sum_{n=0}^{N-1} x[n] ^2 = \frac{1}{N} \sum_{k=0}^{N-1} X[k] ^2$	

Duality

If
$$x \xrightarrow{DFT} X$$
, then $\{X[n]\}_{n=0}^{N-1} \xrightarrow{DFT} N \{x[((-k))_N]\}_{k=0}^{N-1}$

Duality

If
$$x \xrightarrow{DFT} X$$
, then $\{X[n]\}_{n=0}^{N-1} \xrightarrow{DFT} N \{x[((-k))_N]\}_{k=0}^{N-1}$

$$\tilde{x}[n] \stackrel{\mathcal{DFS}}{\longleftrightarrow} \tilde{X}[k],$$

$$\tilde{X}[n] \stackrel{\mathcal{DFS}}{\longleftrightarrow} N\tilde{x}[-k].$$

DFT of
$$\{x[n]\}_{n=0}^{N-1}$$
 is $X[k] = \sum_{p=0}^{N-1} x[p]e^{-j\frac{2\pi}{N}kp}$; $k \le 0 \le N-1$

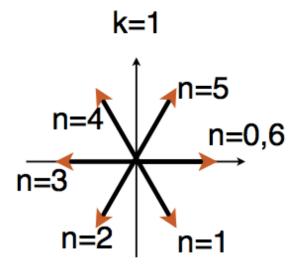
DFT of
$$\{x[n]\}_{n=0}^{N-1}$$
 is $X[k] = \sum_{p=0}^{N-1} x[p]e^{-j\frac{2\pi}{N}kp};$ $k \le 0 \le N-1$
DFT of $\{X[n]\}_{n=0}^{N-1}$ is $\sum_{n=0}^{N-1} \sum_{p=0}^{N-1} x[p]e^{-j\frac{2\pi}{N}pn} e^{-j\frac{2\pi}{N}kn},$ $k \le 0 \le N-1$

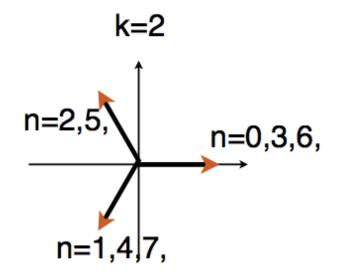
DFT of
$$\{x[n]\}_{n=0}^{N-1}$$
 is $X[k] = \sum_{p=0}^{N-1} x[p]e^{-j\frac{2\pi}{N}kp};$ $k \le 0 \le N-1$

DFT of $\{X[n]\}_{n=0}^{N-1}$ is $\sum_{n=0}^{N-1} \sum_{p=0}^{N-1} x[p]e^{-j\frac{2\pi}{N}pn}e^{-j\frac{2\pi}{N}kn},$ $k \le 0 \le N-1$

$$= \sum_{p=0}^{N-1} x[p] \sum_{n=0}^{N-1} e^{-j\frac{2\pi}{N}(p+k)n}$$

$$= \sum_{p=0}^{N-1} x[p] \sum_{n=0}^{N-1} e^{-j\frac{2\pi}{N}(p+k)n}$$
O otherwise


Discrete Fourier Series


 $W_N \triangleq e^{-j2\pi/N}$

Properties of WN:

$$\mathbf{W}_{N}^{0} = \mathbf{W}_{N}^{N} = \mathbf{W}_{N}^{2N} = \dots = 1$$

- $W_N^{k+r} = W_N^k W_N^r$ and, $W_N^{k+N} = W_N^k$
- \square Example: W_N^{kn} (N=6)

DFT of
$$\{x[n]\}_{n=0}^{N-1}$$
 is $X[k] = \sum_{p=0}^{N-1} x[p]e^{-j\frac{2\pi}{N}kp};$ $k \le 0 \le N-1$

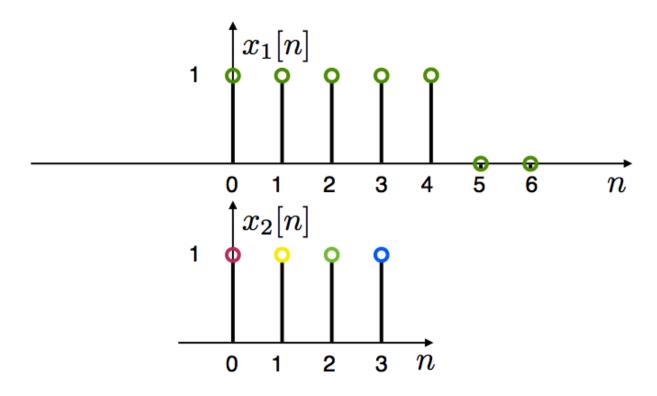
DFT of $\{X[n]\}_{n=0}^{N-1}$ is $\sum_{n=0}^{N-1} \sum_{p=0}^{N-1} x[p]e^{-j\frac{2\pi}{N}pn}e^{-j\frac{2\pi}{N}kn},$ $k \le 0 \le N-1$

$$= \sum_{p=0}^{N-1} x[p] \sum_{n=0}^{N-1} e^{-j\frac{2\pi}{N}(p+k)n}$$

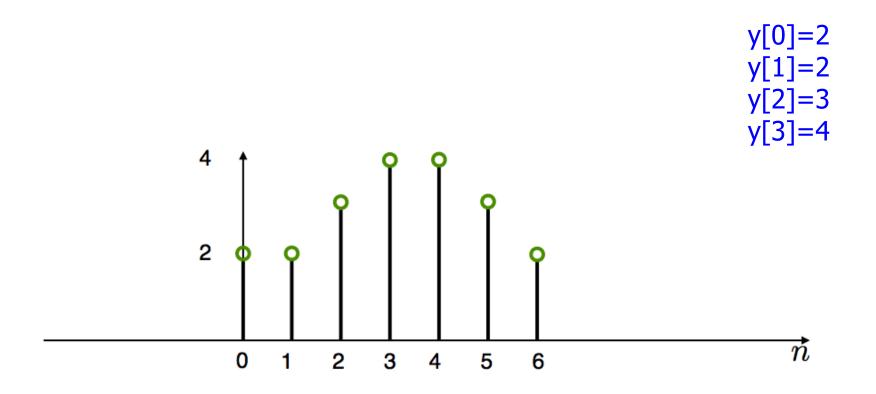
$$= \sum_{n=0}^{N-1} x[n] \sum_{n=0}^{N-1} x[n] \sum_{n=0}^{N-1} x[n]$$

:. DFT of
$$\{X[n]\}_{n=0}^{N-1}$$
 is $N\{x[((-k))_N]\}_{k=0}^{N-1}$

Circular Convolution


Circular Convolution:

For two signals of length N


Note: Circular convolution is commutative

$$x_2[n] \otimes x_1[n] = x_1[n] \otimes x_2[n]$$

Compute Circular Convolution Sum

Result

$$x_1[n] ext{ } ext{ } ext{ } x_2[n] ext{ } ext{$$

Circular Convolution

 \blacksquare For $x_1[n]$ and $x_2[n]$ with length N

$$x_1[n] \otimes x_2[n] \leftrightarrow X_1[k] \cdot X_2[k]$$

Very useful!! (for linear convolutions with DFT)

Multiplication

 \square For $x_1[n]$ and $x_2[n]$ with length N

$$x_1[n] \cdot x_2[n] \leftrightarrow \frac{1}{N} X_1[k] \textcircled{N} X_2[k]$$

Linear Convolution

- □ Next....
 - Using DFT, circular convolution is easy
 - Matrix multiplication... more later
 - But, linear convolution is useful, not circular
 - So, show how to perform linear convolution with circular convolution
 - Use DFT to do linear convolution (via circular convolution)

Linear Convolution

■ We start with two non-periodic sequences:

$$x[n]$$
 $0 \le n \le L-1$
 $h[n]$ $0 \le n \le P-1$

■ E.g. x[n] is a signal and h[n] a filter's impulse response

Linear Convolution

■ We start with two non-periodic sequences:

$$x[n] \quad 0 \le n \le L - 1$$
$$h[n] \quad 0 \le n \le P - 1$$

- E.g. x[n] is a signal and h[n] a filter's impulse response
- We want to compute the linear convolution:

$$y[n] = x[n] * h[n] = \sum_{m=0}^{L-1} x[m]h[n-m]$$

• y[n] is nonzero for $0 \le n \le L+P-2$ (ie. length M=L+P-1)

Requires L*P multiplications

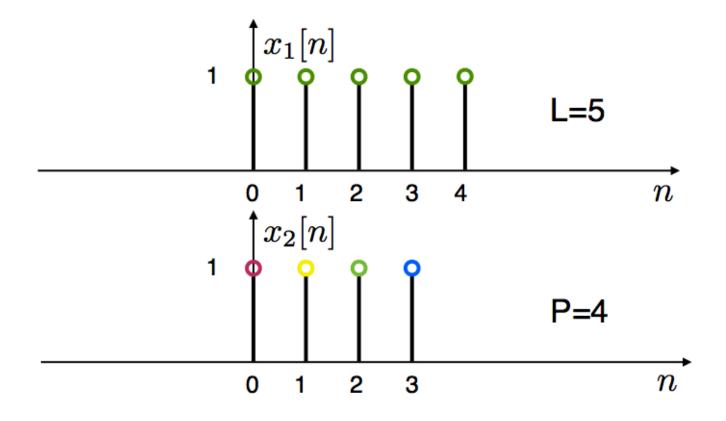
Linear Convolution via Circular Convolution

Zero-pad x[n] by P-1 zeros

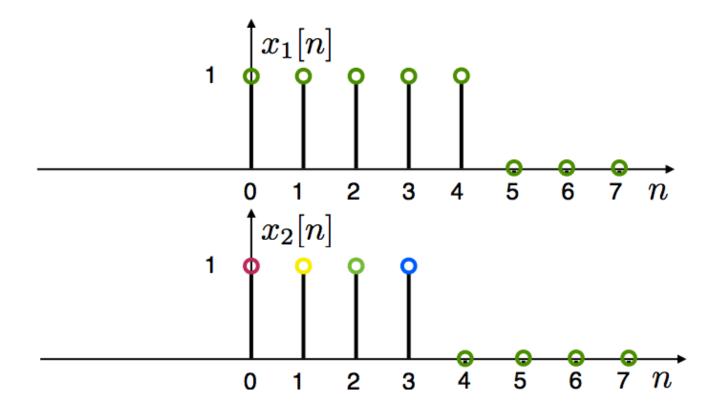
$$x_{\mathrm{zp}}[n] = \left\{ egin{array}{ll} x[n] & 0 \leq n \leq L-1 \\ 0 & L \leq n \leq L+P-2 \end{array}
ight.$$

Zero-pad h[n] by L-1 zeros

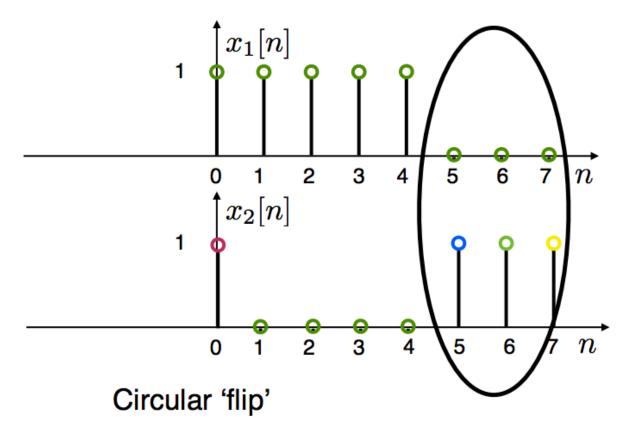
$$h_{\mathrm{zp}}[n] = \left\{ egin{array}{ll} h[n] & 0 \leq n \leq P-1 \\ 0 & P \leq n \leq L+P-2 \end{array}
ight.$$


□ Now, both sequences are length M=L+P-1

Linear Convolution via Circular Convolution


- □ Now, both sequences are length M=L+P-1
- We can now compute the linear convolution using a circular one with length M=L+P-1

Linear convolution via circular


$$y[n] = x[n] * y[n] = \begin{cases} x_{zp}[n] \textcircled{n} h_{zp}[n] & 0 \le n \le M - 1 \\ 0 & \text{otherwise} \end{cases}$$

$$M = L + P - 1 = 8$$

$$M = L + P - 1 = 8$$

$$M = L + P - 1 = 8$$

$$y[n] = x_1[n] \otimes x_2[n] = x_1[n] * x_2[n]$$

Linear Convolution with DFT

■ In practice we can implement a circulant convolution using the DFT property:

$$\begin{split} x[n]*h[n] &= x_{\mathrm{zp}}[n] \textcircled{n} \ h_{\mathrm{zp}}[n] \\ &= \mathcal{DFT}^{-1} \left\{ \mathcal{DFT} \left\{ x_{\mathrm{zp}}[n] \right\} \cdot \mathcal{DFT} \left\{ h_{\mathrm{zp}}[n] \right\} \right\} \\ \text{for 0 } \leq n \leq \text{M-1, M=L+P-1} \end{split}$$

Linear Convolution with DFT

□ In practice we can implement a circulant convolution using the DFT property:

$$\begin{split} x[n]*h[n] &= x_{\mathrm{zp}}[n] \textcircled{n} \ h_{\mathrm{zp}}[n] \\ &= \mathcal{DFT}^{-1} \left\{ \mathcal{DFT} \left\{ x_{\mathrm{zp}}[n] \right\} \cdot \mathcal{DFT} \left\{ h_{\mathrm{zp}}[n] \right\} \right\} \\ \text{for 0 } \leq n \leq \text{M-1, M=L+P-1} \end{split}$$

- Advantage: DFT can be computed with Nlog₂N complexity (FFT algorithm later!)
- Drawback: Must wait for all the samples -- huge delay -- incompatible with real-time filtering

Block Convolution

□ Problem:

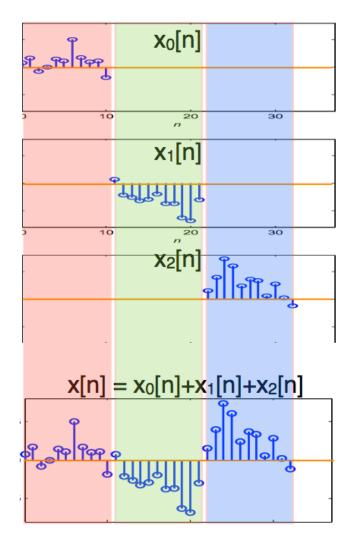
- An input signal x[n], has very long length (could be considered infinite)
- An impulse response h[n] has length P
- We want to take advantage of DFT/FFT and compute convolutions in blocks that are shorter than the signal

Approach:

- Break the signal into small blocks
- Compute convolutions
- Combine the results

Block Convolution

Example: h[n] Impulse response, Length P=6 **PPPPPP** x[n] Input Signal, Length P=33 y[n] Output Signal, Length P=38


Decompose into non-overlapping segments

$$x_r[n] = \begin{cases} x[n] & rL \le n < (r+1)L \\ 0 & \text{otherwise} \end{cases}$$

□ The input signal is the sum of segments

$$x[n] = \sum_{r=0}^{\infty} x_r[n]$$

$$x[n] = \sum_{r=0}^{\infty} x_r[n]$$

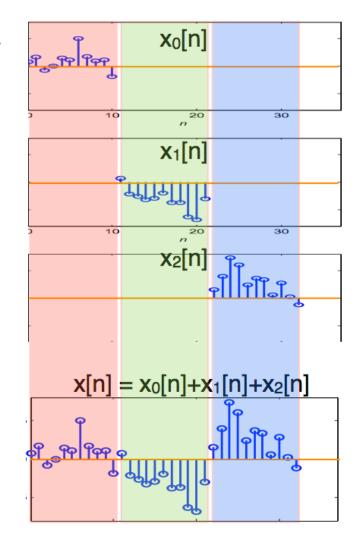
The output is:

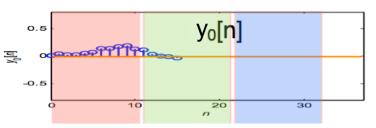
$$y[n] = x[n] * h[n] = \sum_{r=0}^{\infty} x_r[n] * h[n]$$

- Each output segment $x_r[n]*h[n]$ is length N=L+P-1
 - h[n] has length P
 - $x_r[n]$ has length L

- We can compute $x_r[n]*h[n]$ using circular convolution with the DFT
- Using the DFT:
 - Zero-pad $x_r[n]$ to length N
 - Zero-pad h[n] to length N and compute $DFT_N\{h_{zp}[n]\}$
 - Only need to do once

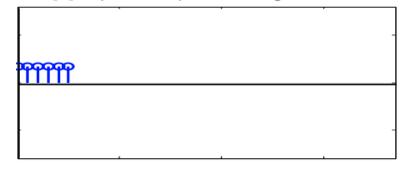
- We can compute $x_r[n]*h[n]$ using circular convolution with the DFT
- Using the DFT:
 - Zero-pad $x_r[n]$ to length N
 - Zero-pad h[n] to length N and compute $DFT_N\{h_{zp}[n]\}$
 - Only need to do once
 - Compute:

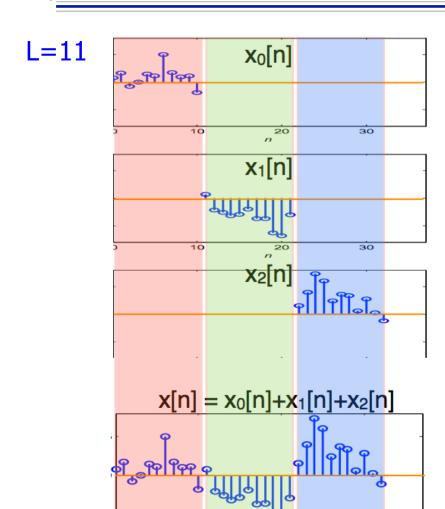

$$x_r[n] * h[n] = DFT^{-1} \{DFT\{x_{r,zp}[n]\} \cdot DFT\{h_{zp}[n]\}\}$$

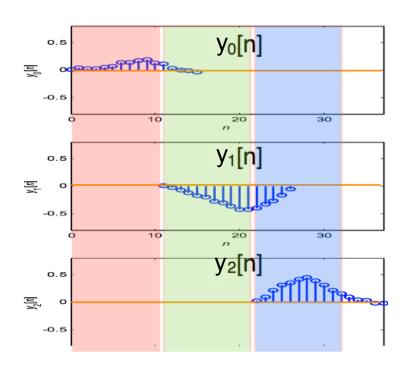

- □ Results are of length N=L+P-1
 - Neighboring results overlap by P-1
 - Add overlaps to get final sequence

Example of Overlap-Add

L+P-1=16

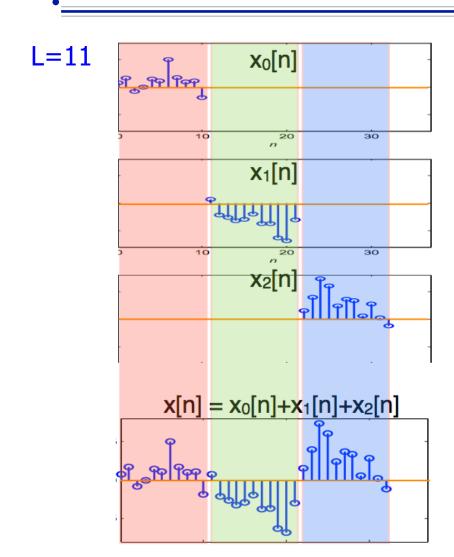


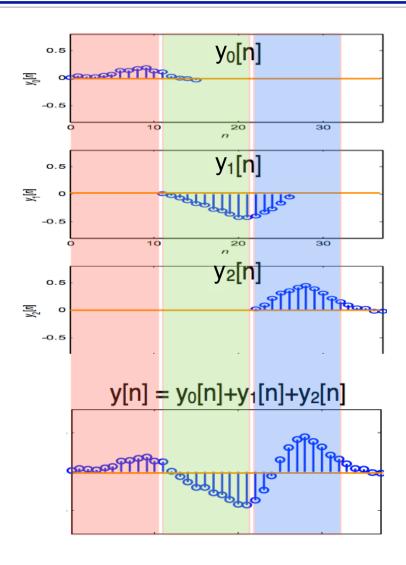

Example:


h[n] Impulse response, Length P=6

Example of Overlap-Add

L+P-1=16



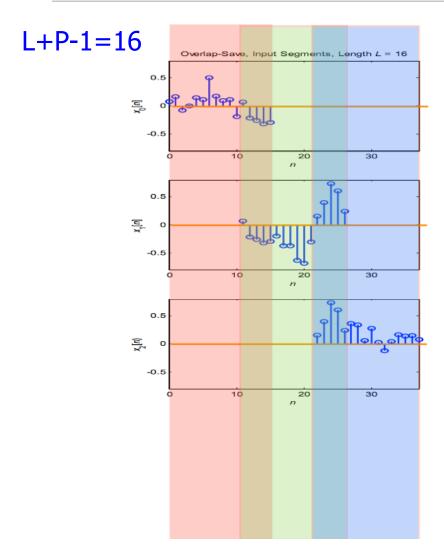


Penn ESE 531 Spring 2018 – Khanna Adapted from M. Lustig, EECS Berkeley

Example of Overlap-Add

L+P-1=16

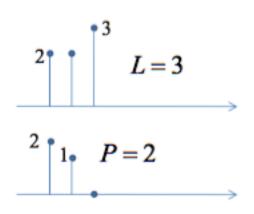
Penn ESE 531 Spring 2018 – Khanna Adapted from M. Lustig, EECS Berkeley

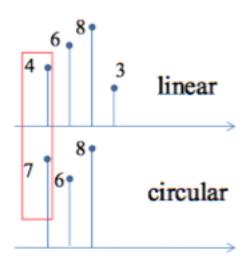

Overlap-Save Method

- □ Basic idea:
- □ Split input into overlapping segments with length L+P-1
 - P-1 sample overlap

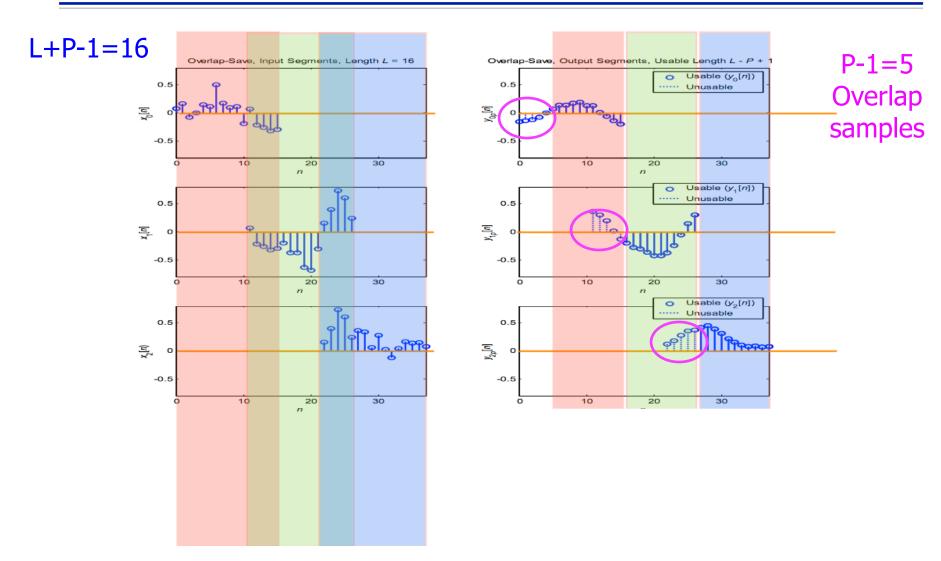
$$x_r[n] = \begin{cases} x[n] & rL \le n < (r+1)L + P \\ 0 & \text{otherwise} \end{cases}$$

■ Perform circular convolution in each segment, and keep the L sample portion which is a valid linear convolution

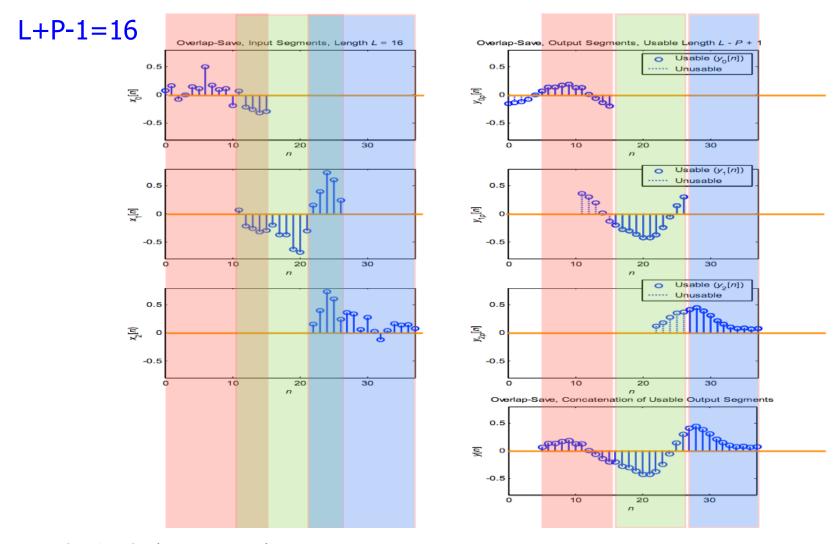

Example of Overlap-Save



Penn ESE 531 Spring 2018 – Khanna Adapted from M. Lustig, EECS Berkeley


Circular to Linear Convolution

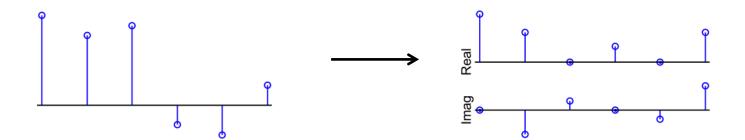
- An *L*-point sequence circularly convolved with a *P*-point sequence
 - with L P zeros padded, P < L
- gives an L-point result with
 - the first *P* 1 values *incorrect* and
 - the next L P + 1 the *correct* linear convolution result



Example of Overlap-Save

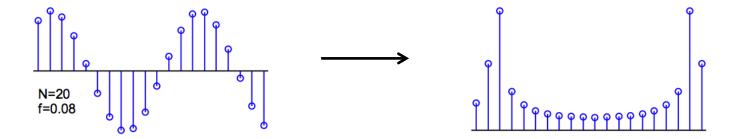
Penn ESE 531 Spring 2018 – Khanna Adapted from M. Lustig, EECS Berkeley

Example of Overlap-Save

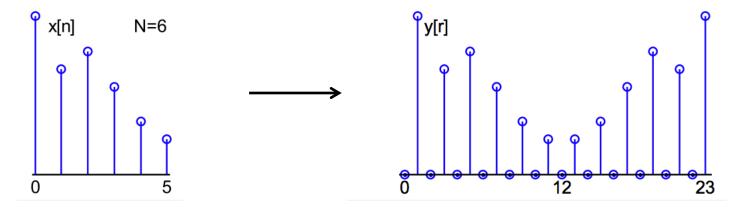


Penn ESE 531 Spring 2018 – Khanna Adapted from M. Lustig, EECS Berkeley

- Similar to the discrete Fourier transform (DFT), but using only real numbers
- Widely used in lossy compression applications (eg. Mp3, JPEG)
- □ Why use it?

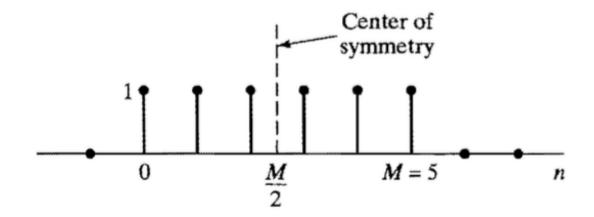

DFT Problems

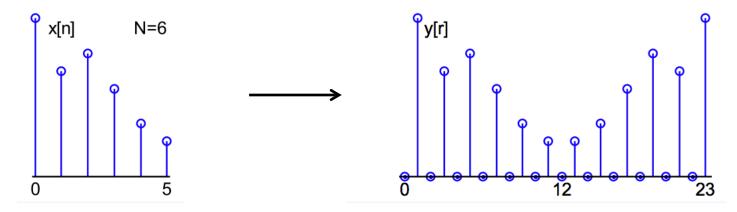
- □ For processing 1-D or 2-D signals (especially coding), a common method is to divide the signal into "frames" and then apply an invertible transform to each frame that compresses the information into few coefficients.
- □ The DFT has some problems when used for this purpose:
 - $N \text{ real } x[n] \leftrightarrow N \text{ complex } X[k] : 2 \text{ real, } N/2 1 \text{ conjugate pairs}$
 - DFT is of the periodic signal formed by replicating x[n]


DFT Problems

- □ For processing 1-D or 2-D signals (especially coding), a common method is to divide the signal into "frames" and then apply an invertible transform to each frame that compresses the information into few coefficients.
- □ The DFT has some problems when used for this purpose:
 - $N \text{ real } x[n] \leftrightarrow N \text{ complex } X[k] : 2 \text{ real, } N/2 1 \text{ conjugate pairs}$
 - DFT is of the periodic signal formed by replicating x[n]
 - ⇒ Spurious frequency components from boundary discontinuity

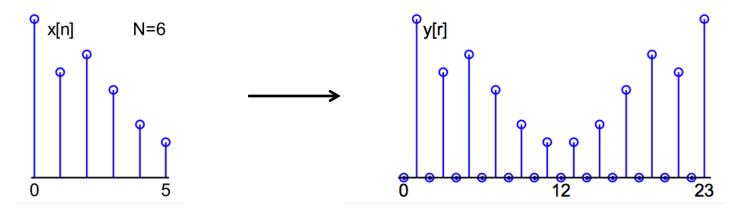
The Discrete Cosine Transform (DCT) overcomes these problems.


To form the Discrete Cosine Transform (DCT), replicate x[0:N-1] but in reverse order and insert a zero between each pair of samples:

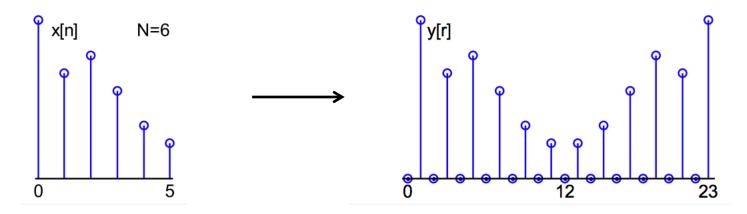

FIR GLP: Type II

Type II Even Symmetry, M odd

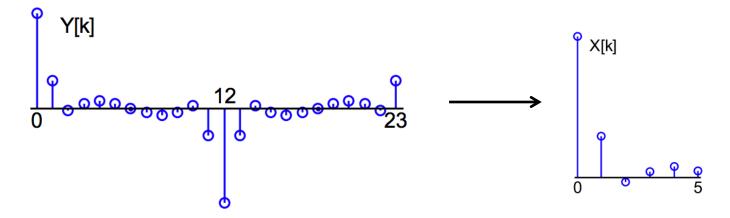
$$h[n] = h[M-n], \quad n = 0,1,...,M$$



To form the Discrete Cosine Transform (DCT), replicate x[0:N-1] but in reverse order and insert a zero between each pair of samples:

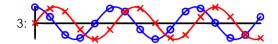


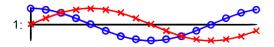
□ Take the DFT of length 4N real, symmetric, odd-sample-only sequence

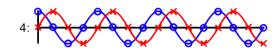

To form the Discrete Cosine Transform (DCT), replicate x[0:N-1] but in reverse order and insert a zero between each pair of samples:

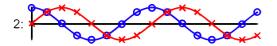
- □ Take the DFT of length 4N real, symmetric, odd-sample-only sequence
- Result is real, symmetric and anti-periodic: only need first N values

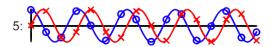
Result is real, symmetric and anti-periodic: only need first N values

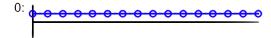

Forward DCT:
$$X_C[k] = \sum_{n=0}^{N-1} x[n] \cos \frac{2\pi (2n+1)k}{4N}$$
 for $k = 0: N-1$

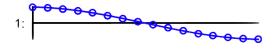

Inverse DCT:
$$x[n] = \frac{1}{N}X[0] + \frac{2}{N}\sum_{k=1}^{N-1}X[k]\cos\frac{2\pi(2n+1)k}{4N}$$

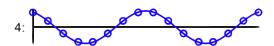

Basis Functions

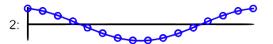

DFT basis functions: $x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j2\pi \frac{kn}{N}}$

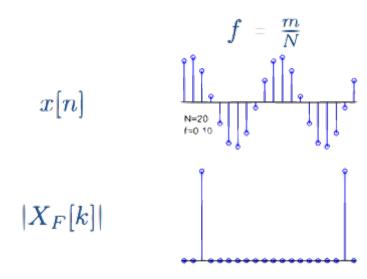


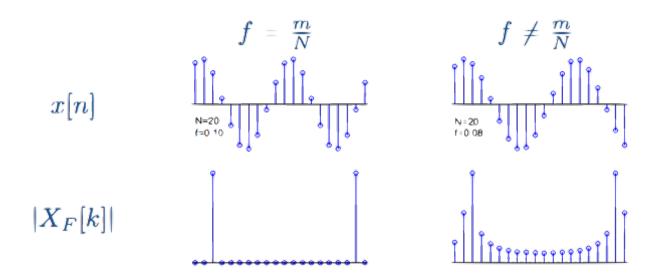







DCT basis functions: $x[n] = \frac{1}{N}X[0] + \frac{2}{N}\sum_{k=1}^{N-1}X[k]\cos\frac{2\pi(2n+1)k}{4N}$





DFT of Sine Wave

DFT of Sine Wave

DFT: Real
$$\to$$
 Complex; Freq range $[0,1]$; Poorly localized unless $f=\frac{m}{N}$; $|X_F[k]| \propto k^{-1}$ for $Nf < k \ll \frac{N}{2}$

DCT of Sine Wave

 $T_{C}[k] = \sum_{n=0}^{N-1} x[n] \cos \frac{2\pi (2n+1)k}{4N}$ $T_{C}[k] = \frac{m}{N} \qquad f \neq \frac{m}{N}$ $T_{C}[k] = \sum_{\substack{n=0 \ 1 \leq 0 \leq k \\ 1 \leq 0 \leq 0}} x[n] \qquad f \neq \frac{m}{N}$ $T_{C}[k] = \sum_{\substack{n=0 \ 1 \leq 0 \leq k \\ 1 \leq 0 \leq k }} x[n] \qquad f \neq \frac{m}{N}$

DFT: Real \rightarrow Complex; Freq range [0, 1]; Poorly localized unless

 $f = rac{m}{N}; |X_F[k]| \propto k^{-1} ext{ for } Nf < k \ll rac{N}{2}$

DCT: Real \rightarrow Real; Freq range [0, 0.5]; Well localized $\forall f$;

 $|X_C[k]| \propto k^{-2}$ for 2Nf < k < N

Big Ideas

- Discrete Fourier Transform (DFT)
 - For finite signals assumed to be zero outside of defined length
 - N-point DFT is sampled DTFT at N points
 - DFT properties inherited from DFS, but circular operations!
- □ Fast Convolution Methods
 - Use circular convolution (i.e DFT) to perform fast linear convolution
 - Overlap-Add, Overlap-Save
- DCT useful for frame rate compression of large signals

Admin

- □ HW 8 due tomorrow
- Project
 - Work in groups of up to 2
 - Can work alone if you want
 - Use Piazza to find partners