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Last Time

oelsiese’s

o Discrete Fourier Transform
= Linear convolution through circular convolution
= Overlap and add
= Overlap and save

= Circular convolution through DFT

a Today

= The Fast Fourier Transform

Penn ESE 531 Spring 2018 — Khanna

Circular Convolution

seseees

o Circular Convolution:
N-1

z1[n) @ waln) 2 3 @1 [mlas[((n — m)) w]

m=0
For two signals of length N

Note: Circular convolution is commutative

z2[n] @ z1[n] = z1[n] @ z2[n]

Penn ESE 531 Spring 2018 — Khanna
Adapted from M. Lustig, EECS Berkeley
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: Circular Convolution as Matrix Operation
a Circular Convolution
N-1
h[n]® x[n] = 2 h[((n-m)), K[m]
m=0
Aol AN—1] -~ AT [ x[0]
h[1] hl0] h2] x[1]
h[n] @x[n] = . )
AN —1] AN —2] ho) | | xIN-1]
= Hx '\
Circulant matrix
Penn ESE 531 Spring 2018 — Khanna
Adapted from M. Lustig, EECS Berkeley 4

Circular Convolution as Matrix Operation

eelsieeels

o Circular Convolution

Mol AN=1 - AT 0]
h[1] h[0] h[2] x[1]
h[n] @ x[n] = . .
AN —1] A[N-2] Alo] | | x[N-1
= H.x
we wer w1
Wy =| wh o whkr . whD
WI(VN:—l)U . W}(\,N:—l)n Wﬁlzvfl:)(zvfn

Penn ESE 531 Spring 2018 — Khanna
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Circular Convolution as Matrix Operation

eelsieeels

0 Diagonalize

HO] 0 0
WyHWgt=| 0 HQ]-- 0
0 HN-1]

Penn ESE 531 Spring 2018 — Khanna
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oelsiese’s

Circular Convolution as Matrix Operation

o Diagonalize

[ H[O] O--- 0
WyHWgt=| 0 HO]-- 0
: 0  HIN-1]
o Right-Multiply by Py
[ HO] O©--- 0o
WyHe=| 0 H[]--- 0 Wi
| 0 HN-1] |
0 Multiply both sides by x
[ H[0] O©--- 0 ]
WyHex=| 0 H[]--- 0 Wix
L 0 HIN-1] |

Penn ESE 531 Spring 2018 — Khanna
Adapted from M. Lustig, EECS Berkeley
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oelsiese’s

Fast Fourier Transform Algorithms

a We are interested in efficient computing methods
for the DFT and inverse DFT:

N-1
XK = Y xnW§", k=0,...,N-1

n=0

x[n]

N-1
S XKWy, n=0,...,N-1
k=0

Wy = 905,

Penn ESE 531 Spring 2018 — Khanna
Adapted from M. Lustig, EECS Berkeley 8

seseees

Reminder: Inverse DFT via DFT

0 Recall that we can use the DFT to compute the
inverse DFT:

1 *
DFTHX[K]} = 5 (PFTAX[K})
= Hence, we can just focus on efficient computation of the

DFT.

a Straightforward computation of an N-point DFT
(or inverse DFT) requires N? complex
multiplications.

Penn ESE 531 Spring 2018 — Khanna
Adapted from M. Lustig, EECS Berkeley

seseees

Computation Order

a Fast Fourier transform algorithms enable computation of
an N-point DFT (or inverse DFT) with the order of
just N -log, N complex multiplications.

= This can represent a huge reduction in computational
load, especially for large N.

2

N N2 N-logyN | w4
16 256 64 4.0
128 16,384 896 183

1,024 | 1,048,576 10,240 102.4
8,192 | 67,108,864 | 106,496 630.2

Penn ESE 531 Spring 2018 — Khanna
Adapted from M. Lustig, EECS Berkeley 10

eelsieeels

Computation Order

a Fast Fourier transform algorithms enable computation of
an N-point DFT (or inverse DFT) with the order of
just N -log, N complex multiplications.

= This can represent a huge reduction in computational
load, especially for large N.

N N2 [N-logyN| iy
16 256 64 4.0
128 | 16,384 896 183

1,024 | 1,048,576 10,240 102.4
8,192 | 67,108,864 | 106,496 630.2
6 x 10° | 36 x 1012 | 135 x 10° | 2.67 x 10°

Penn ESE 531 Spring 2018 — Khanna * 6Mp image size
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eelsieeels

Eigenfunction Properties

0 Most FFT algorithms exploit the following
properties of Wykn:
= Conjugate Symmetry
W/\‘;(N_n) — ngkn — (chn)*

= Periodicity in n and k
WI((/" — WNk(n+N) — W/E/HN)H

= Power
WF = Wy

Penn ESE 531 Spring 2018 — Khanna
Adapted from M. Lustig, EECS Berkeley 12




oelsiese’s

FFT Algorithms via Decimation

0 Most FFT algorithms decompose the computation of a DFT
into successively smaller DFT computations.

= Decimation-in-time algorithms decompose x[n] into successively
smaller subsequences.

Decimation-in-frequency algorithms decompose X[k] into
successively smaller subsequences.

0 Note: Assume length of x[n] is power of 2 (N = 27). If not,
zero-pad to closest power of 2.

Penn ESE 531 Spring 2018 — Khanna
Adapted from M. Lustig, EECS Berkeley

Decimation-in-Time FFT

oelsiese’s

0 We start with the DFT
N-1
X[k =Y x[AWg", k=0,...,N-1

n=0

Penn ESE 531 Spring 2018 — Khanna
Adapted from M. Lustig, EECS Berkeley

seseees

Decimation-in-Time FFT

0 We start with the DFT
N-1
X[k =Y xAWx", k=0,...,N—1
n=0

0 Separate the sum into even and odd terms:

X[k =Y x[awfr+ 3 xnwr

n even n odd

Penn ESE 531 Spring 2018 — Khanna

seseees

Decimation-in-Time FFT

o We start with the DFT
N-1
X[ =Y " x[AWg, k=0,...,N—1
n=0

a Separate the sum into even and odd terms:

Xk =" x[mwWg+ 3 xln W

n even n odd
» These are two DFTs, each with half the number of
samples (N/2)

Penn ESE 531 Spring 2018 — Khanna
Adapted from M. Lustig, EECS Berkeley

Adapted from M. Lustig, EECS Berkeley 15
¢ Decimation-in-Time FFT
XK= Y A Wi+ Y xnlwiy
neven n odd
Let n =2r (neven) and n =2r +1 (n odd):
(N/2)-1 (N/2)-1
XK o= 3 xAWEE+ S xl2r+ qw
=0 r=0
Penn ESE 531 Spring 2018 — Khanna
Adapted from M. Lustig, EECS Berkeley 17

Decimation-in-Time FFT

eelsieeels

Let n=2r (n even) and n =2r + 1 (n odd):

(N/2)-1 (N/2)-1

S xRAWEF+ S x2r+ qwik
r=0 r=0

(N/2)-1 (N/2)-1

ST oxAWEE+ Wl Y xler + 1wk
r=0 r=0

XIK]

Penn ESE 531 Spring 2018 — Khanna
Adapted from M. Lustig, EECS Berkeley




Decimation-in-Time FFT

oelsiese’s

Let n =2r (n even) and n =2r + 1 (n odd):

Decimation-in-Time FFT

oelsiese’s

Let n =2r (n even) and n =2r 4+ 1 (n odd):

(N/2)-1 (N/2)-1
XK o= Y xR2AWEE+ Y xfar+qwro
r=0 r=0
(N/2)-1 (N/2)—1
= Y xRAWFR W > x[2r+ Wik
r=0 r=0
(N/2)-1 (N/2)-1
XK = 3 x2AWi, + WE ST xl2r+ Wi,
r=0 r=0

Penn ESE 531 Spring 2018 — Khanna
Adapted from M. Lustig, EECS Berkeley
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(N/2)-1 (N/2)-1
XK = Y x2AwWFF+ Y xfer+ i
r=0 =0
(N/2)-1 (N/2)—-1
= xRAWFR+WE > x[er+ Wik
r=0 r=0
Note that:
(2 —i(%2)
Wak = e J(F)@rk) — g~ \Wjz)k _ /(/172
Remember this trick, it will turn up often.
Penn ESE 531 Spring 2018 — Khanna
Adapted from M. Lustig, EECS Berkeley 19
¢ Decimation-in-Time FFT
Hence:
(N/2)-1 (N/2)-1
X[k = Y xRAWi, + W > xer+ Wi,
=0 r=0
A k
2 Gk + WLHIK], k=0,...,N—1
Penn ESE 531 Spring 2018 — Khanna
Adapted from M. Lustig, EECS Berkeley 21

Decimation-in-Time FFT

seseees

Hence:
(N/2)-1 (N/2)-1

XK = S xRAWL, +WE > x[er+ Wi,
r=0 r=0

2 Gk + WEHIK], k=0,...,N—1

where we have defined:

(N/2)-1
GlK] 4 Z x[2r] W,(,k/z = DFT of even samples
r=0
(N/2)-1
HIK] B Z x[2r+1] W,(,“/2 = DFT of odd samples
r=0

Penn ESE 531 Spring 2018 — Khanna

Decimation-in-Time FFT

eelsieeels

An 8 sample DFT can then be diagrammed as X[K] = G[k] + W,{}H[k]

x[0] o—— X[0]
o
o
] o—
s a2 N/2 - Point X
g g o— OFT X2l
Y i) o—r X1
x[1] o— X4
o
o
% M3 wy2- Point XBs]
% s o— PFT X[6]
°
© X[7] o—— X[r]

Penn ESE 531 Spring 2018 — Khanna
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¢ Decimation-in-Time FFT
Both G[k] and H[k] are periodic, with period N/2. For
example
(N/2)-1
Gl 2 > xrwik,
r=0
(N/2)-1
k+N/2
Glk+N/2l = > xRAW P
r=0
Penn ESE 531 Spring 2018 — Khanna
Adapted from M. Lustig, EECS Berkeley 24




Decimation-in-Time FFT

oelsiese’s

Both G[k] and H[k] are periodic, with period N/2. For

example
(N/2)-1
Gl & Y x[2r] W,

r=0

(N/2)-1

Glk+N/2 = > xrAw ik

r=0

(N/2)-1

= Y xrwg,was?

r=0

Penn ESE 531 Spring 2018 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

seseees

o So,
Glk +(N/2)]
Hlk + (N/2)]

0 The periodicity of G[k] and H[k] allows us to
further simplify. For the first N/2 points we
calculate G[k] and W *H[k], and then compute the

sum

G[A]
HIK]

N
X[k] = G[k] + WEH[K] Vik:0<k< 3}
How does periodicity help for g] <k<N?

Penn ESE 531 Spring 2018 — Khanna
Adapted from M. Lustig, EECS Berkeley

¢ Decimation-in-Time FFT
Both G[k] and H[k] are periodic, with period N/2. For
example
(N/2)-1
Gl 2 Y xrwik,
r=0
(N/2)-1
Glk+N/2 = 3 xrAw i
=0
(N/2)-1 -1
= Z x[2r] W,(,k/2
=0
(N/2)-1
= Y xr Wik
r=0
= Gk
Penn ESE 531 Spring 2018 — Khanna
Adapted from M. Lustig, EECS Berkeley 26

Decimation-in-Time FFT

seseees

X[k] = G[k] + WS H[K] v{k:0<k< g}.

for ¥ <k <N:

WA/;+(N/2) =7

X[k + (N/2)] =2

Penn ESE 531 Spring 2018 — Khanna
Adapted from M. Lustig, EECS Berkeley 28

Decimation-in-Time FFT

eelsieeels

X[k +(N/2)] = G[k] - WHIK]
0 We previously calculated G[k] and W*H[k].

o Now we only have to compute their difference to
obtain the second half of the spectrum. No
additional multiplies are required.

Penn ESE 531 Spring 2018 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

An 8 sample DFT can then be diagrammed as X[k] = G[K] + WﬁH[k]

eelsieeels

G[0]
x[0] o—— 0 X[0]
3 G[1] Wy
E k& Nz2-Point | g N X
a3 DFT
s X4 o°—f V3 X[2]
L% G[3] N
x{6] o—— X(3]
Hfo] N
x[1] o— X[4]
2 H1], = W,0
g N/2 - Point ey X
3 DFT HE2], NI
o X5 o—f o X[6]
3 H[3] Wy~ =Ny
X[7] o—— =W X[7]
wy" TN
Penn ESE 531 Spring 2018 — Khanna
Adapted from M. Lustig, EECS Berkeley 30




Decimation-in-Time FFT

oelsiese’s

The N-point DFT has been reduced two N/2-point DFTs,
plus N/2 complex multiplications. The 8 sample DFT is then:

Glk]
x[0] o— o X[o]
2
8
x[2] o—f . X[1]
5 2 ot
s x[4] o—f X2
g
Y xt6] o—f X131
(1] o— X4
2
8
2 xf5] o— DFT X[e]
°
8 TN
X[7] o— o 7 X[7]
HIgwW T
Penn ESE 531 Spring 2018 — Khanna
Adapted from M. Lustig, EECS Berkeley 31

Decimation-in-Time FFT

oelsiese’s

a Note that the inputs have been reordered so that the
outputs come out in their proper sequence.

a We can define a butterfly operation, e.g., the
computation of X[0] and X[4] from G[0] and H[0]:

G[o] X[0] =G[0] + WNO H[o]
w,
HIo] X[4]=G{o] - Wy Hjo]

Penn ESE 531 Spring 2018 — Khanna

Decimation-in-Time FFT

seseees

o Note that the inputs have been reordered so that the
outputs come out in their proper sequence.

o We can define a butterfly operation, e.g., the
computation of X[k] and X[k+N/2] from G[k] and
H[k]:

X[k] = G[K]+W,/H[k]

G[k] Glo] x[0] =G[o] + W Hpo
W,k
w0 Xk+N/2] = GIK]-WHIK]
H[k] H[o] - X[4] =G[o] - WL H[o]
Penn ESE 531 Spring 2018 — Khanna
Adapted from M. Lustig, EECS Berkeley 33
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¢ Decimation-in-Time FFT
o Still ON?) operations.... What should we do?
Gl
x[0] o— o X[o]
o
2
g N2 - Point X
2 xg o— T Xz
g
Y e o— Xi3]
x[1] o— Xr4]
"
3
R VN =
DFT
o
x[7] o— o X[7]
Hgwy !
Penn ESE 531 Spring 2018 — Khanna
Adapted from M. Lustig, EECS Berkeley 34

Decimation-in-Time FFT

eelsieeels

0 We can use the same approach for each of the N/2
point DFT’s. For the N = 8 case, the N/2 DFTs

look like
MO = s - point © ol
g o— PFT 5 ><o ar
W,
M2 O s - point WM1 ) ~ G[2]
xt6] o— PFT 2 6

-1

*Note that the inputs have been reordered again.

Penn ESE 531 Spring 2018 — Khanna
Adapted from M. Lustig, EECS Berkeley 35

Decimation-in-Time FFT

eelsieeels

0 At this point for the 8 sample DFT, we can replace
the N/4 = 2 sample DFT’s with a single butterfly.
The coefficient is

Wijs = Wejs = Wo =™ = -1

Penn ESE 531 Spring 2018 — Khanna
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Decimation-in-Time FFT

oelsiese’s

0 At this point for the 8 sample DFT, we can replace
the N/4 = 2 sample DFT’s with a single butterfly.
The coefficient is

Wiya = Waa =Wo = e ™ = -1

The diagram of this stage is then
x[0] x[0] + x[4]

x[4] x[0] - x[4]
-1
Penn ESE 531 Spring 2018 — Khanna
Adapted from M. Lustig, EECS Berkeley 37

Decimation-in-Time FFT

oelsiese’s

Combining all these stages, the diagram for the 8 sample DFT is:

x[0] o—— X[0]
1
4] o—— X1
ER
2] 2]
1 W' /\
x[6] X[3]
7 & "
x[1] 7 X[4]
1 X NSt KX\
x[5] X[5]
T 0 w2 21
3 o—— -~ X1
; ? Wy /\ wy?
X[7] (7]
1 1 -1

Penn ESE 531 Spring 2018 — Khanna
Adapted from M. Lustig, EECS Berkeley 38

Decimation-in-Time FFT

seseees

Combining all these stages, the diagram for the 8 sample DFT is:

x[0] o— X[0]
1
x[4] X1l
b 0
W,
e XX @
1
x[6] X[3]
] 9w
1 W,
X[5] o Nz v X151
T owy? Wy /\
N Xw]

x[7] X[7]

+ 3=log,(N)=log,(8) stages
« 4=N/2=_8/2 multiplications in each stage

Penn ESE 531 Spring 2018 — Khanna «+ 1st stage has trivial multiplication
Adapted from M. Lustig, EECS Berkeley 39

Decimation-in-Time FFT

seseees

Combining all these stages, the diagram for the 8 sample DFT is:

x[0] Qggijgzv X[0]
x[4] X[1]
-1 w, 0
N2
X[2] o— X[2]
WNQ1///Z$\\h
x[6] X[3]
KL R
x[1] 7 X[4]
w,
(5] D—X; Y xt5]
o ER w2 /1\ o
X
- -1
Wao' /\ wy®
-1

7] > 17

* 3=log,(N)=log,(8) stages
« 4=N/2=8/2 multiplications in each stage

Penn ESE 531 Spring 2018 — Khanna o st stage has trivial multiplication
Adapted from M. Lustig, EECS Berkeley 40

Decimation-in-Time FFT

eelsieeels

o

In general, there are log,N stages of decimation-in-time.

o

Each stage requires N/2 complex multiplications, some of
which are trivial.

o

The total number of complex multiplications is (N/2) log,N,
or is O(N log,N)

Penn ESE 531 Spring 2018 — Khanna
Adapted from M. Lustig, EECS Berkeley 4

Decimation-in-Time FFT

eelsieeels

0 In general, there are log,N stages of decimation-in-time.

0 Each stage requires N/2 complex multiplications, some of
which are trivial.

0 The total number of complex multiplications is (N/2) log,N,
or is O(N log,N)

0 The order of the input to the decimation-in-time FFT
algorithm must be permuted.
= First stage: split into odd and even.
» Zero low-order address bit (LSB) first
= Next stage repeats with next zero-lower bit

= Net effect is reversing the bit order of indexes

Penn ESE 531 Spring 2018 — Khanna
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Decimation-in-Time FFT

oelsiese’s

This is illustrated in the following table for N = 8.

[ Decimal [ Binary
0 000
001
010
011
100
101
110
111

N OO B W N =

Penn ESE 531 Spring 2018 — Khanna
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Decimation-in-Time FFT

oelsiese’s

This is illustrated in the following table for N = 8.

Decimal | Binary | Bit-Reversed Binary
0 000 000
1 001 100
2 010 010
3 011 110
4 100 001
5 101 101
6 110 011
7 111 111

Penn ESE 531 Spring 2018 — Khanna
Adapted from M. Lustig, EECS Berkeley 44

Decimation-in-Time FFT
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This is illustrated in the following table for N = 8.

Decimal | Binary | Bit-Reversed Binary | Bit-Reversed Decimal
0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

Penn ESE 531 Spring 2018 — Khanna
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Decimation-in-Time FFT

seseees

Combining all these stages, the diagram for the 8 sample DFT is:

X[0]

x[1]

X[2]

X3

X[4]

X[5]

X[e]

X[7]

Penn ESE 531 Spring 2018 — Khanna
Adapted from M. Lustig, EECS Berkeley 46

eelsieeels

Decimation-in-Frequency FFT

The DFT is
N-1

X[k =3 x[n]Wik

n=0
If we only look at the even samples of X[k], we can write k = 2r,
N-1
XA =3 xawy®”

n=0

We split this into two sums, one over the first N/2 samples, and
the second of the last N/2 samples.

(N/2)-1 (N/2)-1
Xpl= Y AW+ Y xln+ Nj2wy )
n=0 n=0

Penn ESE 531 Spring 2018 — Khanna
Adapted from M. Lustig, EECS Berkeley 47

eelsieeels

Decimation-in-Frequency FFT

But Wy ™MD = W W = WEm = W,

Penn ESE 531 Spring 2018 — Khanna
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Decimation-in-Frequency FFT

oelsiese’s

But Wy D) = wRmW = Wi = Wi,
We can then write

(v/2)-1 (N/2)-1
xRl o= Y AAWEm+ S xln+ Nj2wy N
n=0 n=0
(v/2)-1 (v/2)-1
= > XaWEm+ Y xin+ N/2AWRT
n=0 n=0

Penn ESE 531 Spring 2018 — Khanna

Decimation-in-Frequency FFT

oelsiese’s

But WD) = Wamwi = Wi = W,
We can then write

(N/2)-1 (N/2)-1
X2l = Y xaWEm+ S xln+ Nj2wy YD
n=0 n=0
(N/2)-1 (N/2)-1
= > AW+ Y xin+ N2WET
n=0 n=0
(N/2)-1
= D> (xlnl+xn+N/2) Wi,
n=0
This is the N/2-length DFT of first and second half of x[n]

summed.

Penn ESE 531 Spring 2018 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Frequency FFT
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X[2r] = DFT% {(x[n] + x[n + N/2])}
X[2r+1] = DFTy {(x[n] — x[n+ N/2]) W}

(By a similar argument that gives the odd samples)
o Continue the same approach on the N/2 DFTs, and N/4

DFTs until we reach the 2-point DFT, which is a simple
butterfly operation

Penn ESE 531 Spring 2018 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Adapted from M. Lustig, EECS Berkeley 49
: Decimation-in-Frequency FFT
X[2r] = DFTu {(x[n]+ x[n+ N/2])}
2
X[2r+1] = DFTu {(x[n] — x[n + N/2]) W}
2
(By a similar argument that gives the odd samples)
Penn ESE 531 Spring 2018 — Khanna
Adapted from M. Lustig, EECS Berkeley 51
¢ Decimation-in-Frequency FFT
The diagram for and 8-point decimation-in-frequency DFT is as
follows
x[0] X[o]
(1] s X4
x(2] X2
AN
x[3] X6]
w0 1 -1
4] ] 1]
LXK i N 75
x[5] X[5]
2 ) w0 1
6] /1\ i = X3
- 3 1
N Wy
7 > - o X7
This is just the decimation-in-time algorithm reversed!
The inputs are in normal order, and the outputs are bit reversed.
Penn ESE 531 Spring 2018 — Khanna
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Decimation-in-Time FFT
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Combining all these stages, the diagram for the 8 sample DFT is:

x[4] o— 5 X[1]

Wy’
x[2] F X[2]
w,
X[6] o—— 2 X[3]
K 4wy
x[1] X[4]
Wy &

5] X[5]
T wZ N
M CEANEE ] X
N2 N
X7] > X171

1 -1

+ 3=log,(N)=log,(8) stages

* 4=N/2=8/2 multiplications in each stage

Penn ESE: 531 Spring 2018 - Khanna + 1%t stage has trivial multiplication
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Non-Power-of-2 FFT's

oelsiese’s

o A similar argument applies for any length DFT, where the
length N is a composite number

a For example, if N=6, a decimation-in-time FFT could
compute three 2-point DFTs followed by two 3-point DFTs

X[0] 9 2.point [© 9 ° Xfo]
DFT 0 )
x3] 9 We srontlo Xp2)
X[1] 9| 2-point ) o X[M4]
oFT | wy
4] o o X1
3-Point
X2] 9| 2.point oET o X[
oFT | w2
x[5] 9] o—8— o o X[5]

Penn ESE 531 Spring 2018 — Khanna
Adapted from M. Lustig, EECS Berkeley

Non-Power-of-2 FFT's

oelsiese’s

o Good component DFTs are available for lengths up to
20(ish). Many of these exploit the structure for that specific
length

= For example, a factor of
Wt = eI TN = e7if = _j
Just swaps the real and imaginary components of a complex number.

Hence a DFT of length 4 doesn’t require any complex multiples.

= Half of the multiples of an 8-point DFT also don’t require
multiplication

= Composite length FFTs can be very efficient for any length that
factors into terms of this order

Penn ESE 531 Spring 2018 — Khanna
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Non-Power-of-2 FFT's

seseees

o For example N = (93 factors into
= N= (7)1
a each of which can be implemented efficiently. We
would perform
= 9x 11 DFTs of length 7
= 7x 11 DFTs of length 9, and
= 7x 9 DFTs of length 11
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Non-Power-of-2 FFT's

seseees

0 Historically, the power-of-two FFTs were much
faster (better written and implemented).

a For non-power-of-two length, it was faster to zero
pad to power of two.

0 Recently this has changed. The free FFTW package
implements very efficient algorithms for almost any
filter length. Matlab has used FFTW since version 6
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FFT Computation FLOPS

X 105 Number of FLOPS for MATLAB FFT Function
6 T T T T

Number of FLOPS

Transform length N
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FFT Computation Time

eelsieeels

FFT computation time (Matiab FFTW) on MacBookPro

001

un time (ms]

0.005| &
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FFT as Matrix Operation

oelsiese’s

O(N—
X[o] wy o wir wyt=h [0]
X[k = we w0y xin]
XIN - 1] B RO (R (AT AN -1)

0 Wy is fully populated = N? entries
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FFT as Matrix Operation

oelsiese’s

O(N—
(ol WP <[]
X[k - we Wi wNe xin]
X[N - 1] W,El/\i—x)o W,(VN'—x),. WLN—i)(Nq) XN 1)

0 Wy is fully populated = N entries
0 FFT is a decomposition of Wy into a more sparse form:
[ Ing2 - Dwj2 } [ Wy 0 } [ Even-Odd Perm.
Fn = .
Inj2 —Dnj2 0 Wi/2 Matrix

a Iy, is an identity matrix. Dy, is a diagonal matrix with
entries 1, Wy, =+, W V2!
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FFT as Matrix Operation

seseees

Fy = [ Inz Dijz ] [ Wy 0 ] [ Even-Odd Perm.
In2 —Dnj2 0 Wy Matrix

Example: N =4

10 1 0 11 0 0 1000
Fi= 01 0 W, 1 -10 0 0010
10 -1 0 00 1 1 0100
01 0 —-W, 0 0 1 -1 0001
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Beyond NlogN

seseees

0 What if the signal x[n] has a k sparse frequency
= A. Gilbert et. al, “Near-optimal sparse Fourier representations via
sampling
= H. Hassanieh et. al, “Nearly Optimal Sparse Foutier Transform”
= Others...
= O(K Log N) instead of O(N Log N)
i Run Time vs Signal Size (k=50) 2%2)
farFT 0 Etne)

Run Time vs Signal Sparsity (N=:

Big Ideas

eelsieeels

o Fast Fourier Transform

Enable computation of an N-point DFT (or DFT"!) with
the order of just N -log, N complex multiplications.

Most FET algorithms decompose the computation of a DFT into
smaller DFT computations.

= Decimation-in-time algorithms

= Decimation-in-frequency

Historically, power-of-2 DFT's had highest efficiency

Modern computing has led to non-power-of-2 FFT's with
high efficiency

Sparsity leads to reduce computation on order K -logN
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