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s Wavelet Transform

s Compressive Sampling/Sensing
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Wavelet Transform

Penn



: Motivation

0 Some signals obviously have spectral characteristics
that vary with time




Criticism of Fourter Spectrum

a It’s giving you the spectrum of the ‘whole time-
series’

0 Which is OK 1f the time-series is stationary. But
what if its not?

0 We need a technique that can “march along” a time
series and that is capable of:
= Analyzing spectral content in different places

= Detecting sharp changes n spectral character



Fourier vs. Wavelet

0 Fourier Analysis is based on an indefinitely long
cosine wave of a specific frequency

0 Wavelet Analysis is based on an short duration
wavelet of a specific center frequency




Decomposition atlevel5:s=aS+di+ dd+d3I+d2 + 1.
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Wavelet Transtform

0 All wavelet derived from mwother wavelet

1 -1
w. (1) = 7111[—

8 AY y,

0 Must satisty

/ |\If(t)|2dt — 1 = unitnorm
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Examples ot Wavelets

Mexican Hat
U(t) = (1 —t2)e b /2

AVAAVA

(-1 0<t<}
U(t)y=¢ 1 1<t<l1
0 otherwise
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Wavelet — Scaled and Shifted

ormalization
/ 1ft in time
1 1—7

W, ()= T

AY

\

change 1n scale:
big s means long

wavelength
wavelet with

scale, s and time, T

Mother wavelet



Shannon Wavelet W (f) = %w[f—_’c] i

0 W(t) =2 sinc(2t) — sinc(t)
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Wavelet Transform

time-series

\
y(s,0)= [ f(OF _ (1)dt

AVIRN

coeftficient of wavelet
with wavelet with
scale, s and time, T scale, s, and shift, t



Inverse Wavelet Transform

0 Build up a time-series as sum of wavelets of
different scales, s, and positions, t

F@0 = [v(s. 0w, (duds

time-series wavelet with
scale, s and time, T

1
coefticients

of wavelets



: Wavelet Transform

o Determining the wavelet coefficients for a fixed
scale, s, can be thought of as a filtering operation

y(s,0)= [ f(OP_ (t)di
v, ()= [ f(OW (t)di = f(1)* ¥ (1)

0 where

W (1) = iwg)

Js



Shannon Wavelet W (f) = %w[f—_’c] i

0 W(t) =2 sinc(2t) — sinc(t)

mother wavelet |
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Fourier spectrum of Shannon Wavelet
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0 Wavelet coetficients are a result of bandpass
filtering



. Discrete wavelets:

0 Scale wavelets only by powers of 2
L szzj
0 And shifting by multiples of s; for each

successive scale
T, = 2k
0 Then Y(S;, T,)) = Y

= wherej=1,2,...0,k=-00... 2 -1,0,1,2, ...

e
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Discrete Wavelet Transform

0 The tactor of two scaling means that the spectra of
the wavelets divide up the frequency scale into
octaves (frequency doubling intervals)

S0 s anami

1
/ Swny %(Dny 1/2(Dny (Dny
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Discrete Wavelet Transform

0 As we saw previously, the coefficients of W is just
the band-pass filtered time-series, where ¥ is the
wavelet, now viewed as the impulse response of a

bandpass filter.

Penn ESE 531 Spring 2018 - Khanna
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Discrete Wavelet Transform

0 As we saw previously, the coefficients of W is just
the band-pass filtered time-series, where ¥ is the

wavelet, now viewed as the impulse response of a

bandpass filter.
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Digital Wavelet as Multirate Filter Bank

0 Repeat recursively!
4

p N 7N
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Digital Wavelet as Multirate Filter Bank

time-series of length N

HP v(s,t): N/2 coefficients

LP
Y(s,,t): N/4 coefficients

..

12 2

s,,t): N/8 coefficients
Y(Slat) Y( 2 )

P LP

Total: N coefficients
{2

Y(829t)
%

Y(S3 9t)

$2

slE



From http://en.wikipedia.org/wiki/Coiflet
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Stage 3 lo

stage 4 - hi

stage 4 - lo




Stage 4 lo

stage 5 - hi

Stage 5 - lo




Stage 5 lo

Stage 6 - hi

R \/




Putting 1t all together ..
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Compressive Sampling
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Compressive Sampling

Anythin
. ything —
0
0 What is the rate you need to sample at?
= At least Nyquist

Penn ESE 531 Spring 2018 — Khanna
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Compressive Sampling

Something
| T
0
0 What is the rate you need to sample at?
= Maybe less than Nyquist...

Penn ESE 531 Spring 2018 — Khanna
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First: Compression

0 Standard approach

= First collect, then compress

= Throw away unnecessary data

p
1001101001101
0001001110101
0100110100010
0010101101010
1010101100101
1101110111010
1010110110110

10100111111
\

B%ﬁimm] HCompr‘ession

Penn ESE 531 Spring 2018 — Khanna
Adapted from M. Lustig, EECS Berkeley




First: Compression

a0 Examples

o Audio — 10x
= Raw audio: 44.1kHz, 16bit, stereo = 1378 Kbit/sec
= MP3: 44.1kHz, 16 bit, stereo = 128 Kbit/sec

= Images — 22x

= Raw image (RGB): 24bit/pixel

= JPEG: 1280x960, normal = 1.09bit/pixel
s Videos — 75x

= Raw Video: (480x360)p/frame x 24b/p x 24frames/s + 44.1kHz
x 16b x 2 = 98,578 Kbit/s

= MPEG4: 1300 Kbit/s

Penn ESE 531 Spring 2018 — Khanna
Adapted from M. Lustig, EECS Berkeley

37



First: Compression

0 Almost all compression algorithm use transform
coding
= mp3: DCT
= JPEG: DCT
= JPEG2000: Wavelet
s MPEG: DCT & time-difference

Penn ESE 531 Spring 2018 — Khanna
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First: Compression

0 Almost all compression algorithm use transform
coding
= mp3: DCT
= JPEG: DCT

s JPEG2000: Wavelet E A
s MPEG: DCT & time-difference
Tre
e odl
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: Sparse Transform
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Sparse Transform

2.5" Ll Ll n Ll L3 “
2k
15} -
1l n
1+ -
0S5t -1
! ! 1 "
% 50 100 I?O 200 250 3?0

Difference

‘} A L] °7 T T n
0~ .
" | | i
0S5 —
-1+ -

iy 50 100 %5 200 250 i)

Penn ESE 531 Spring 2018 — Khanna
Adapted from M. Lustig, EECS Berkeley



Compressive Sensing/Sampling

0 Standard approach

= First collect, then compress

= Throw away unnecessary data

e N
1001101001101
0001001110101
0100110100010
0010101101010

1010101100101

1101110111010

1010110110110

10100111111

101000110100
1101011

HCompr‘ession
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Compressive Sampling

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in some cases
exactly recover
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Compressive Sampling

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in some cases
exactly recover

Sparse signal in time Frequency spectrum

|

0 10 20 30 40 50 60 0 0.5 1 1.5 2 2.5 3 3.5 4
Time (s) Frequency (Hz)



Compressive Sampling

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in some cases
exactly recover

Undersampled in time

0 10 20 30 40 50 60
Time (s)
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Compressive Sampling

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in some cases
exactly recover

Undersampled in time

0 10 20 30 40 50 60

Time (s) 0 0.5 1 1.5 2 2.5 3 3.5
Frequency (Hz)

4
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Compressive Sampling

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in some cases
exactly recover

Undersampled in frequency

ndersampled in time = .
Undersampled (reconstructed in time with IFFT)

0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time (s) Time (s)

47



Compressive Sampling

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in some cases

exactly recover

Undersampled in time

Undersampled in frequency
(reconstructed in time with IFFT)

0

10

20

(W

30 40 50 60 0
Time (s)

Requires sparsity anc

10 20 30 40 50 60
Time (s)

incoherent sampling

48



Compressive Sampling: Simple
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Compressive Sampling

Input signal with undersampled measurements circled {~17.5% of Myquist samples)
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0 Sense signal randomly M
times

s M>C u?(®d,¥Y)SlogN
0 Recover with linear
program

minZIQ(w)l subjectto g(t,) = f(t,), m=1,..,M
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Compressive Sampling
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Example: Sum of Sinusoids

Power (dB)

Fecovered spectrum using L1 minimization

20

-40
-50 ’ | ‘
l
60 J 1
=70 ——— Recovered
——FFT L
¥ Exact
-80 | | | | | | T T |
0 2 6 8 10 12 14 16 18
Frequency (Hz)

o Two relevant “knobs”

= percentage of Nyquist
samples as altered by
adjusting optimization
factor, C

= 1nput signal duration, T

= Data block size
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er (dB)

Pow:
&

Example: Increasing C

C=2.5
17.5%

C=7.5
51.9%

‘ I
\\ |
——— Recovered
——FFT L
Exact
|
18 20
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“xample: Increasing C

(mHz)

err,max

f

Fecovered spectrum performance for increasing samples
10 T T T T T 45 T T T T T

35}
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n
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20
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0 1 20 30 40 50 60 0 1 20 30 40 50 60
Percentage of Nyquist samples Percentage of Nyquist samples




Example: Increasing T

Power (dB)

Recovered spectrum using L1 minimization Recovered spectrum using L1 minimization Recovered spectrum using L1 minimization
or e or ke or *
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“xample: Increasing T

(mHz)

f

err,max
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Recovered spectrum performance for increasing T
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Power (uW)

Power (uW)

Biometric -

“xample:

’—

Parkinson’s Tremors

-
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0.2
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Subject 8

o
(¢]

Power (uW)
N & =&

©
-

L

0 20 40 80
Frequency (Hz)

o

0 6 Subjects of real tremor
data

= collected using low intensity
velocity-transducing laser
recording aimed at reflective
tape attached to the subjects’
tinger recording the finger
velocity

s All show Parkinson’s tremor

in the 4-6 Hz range.

= Subject 8 shows activity at
two higher frequencies

= Subject 4 appears to have two
tremors very close to each
other in frequency
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Real Data

Compressive Sampling

Recovered Frequency Spectrum: Subject 8

Recowvered Frequency Spectrum: Subject | Time Signal: Subject 8

Time Signal: Subject B
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: Biometric Example: Parkinson’s

Tremors

; m I | M M' M i\ w l}t [IM R
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" C 10.5, T=30
20% Nyquist required samples
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Biometric Example: Parkinson’s Tremors

Frequency error in tremor detection

Subject Number

Tremors detected
within 100 mHz

randomly sample
20% of the
Nyquist required
samples

Requires post processing to randomly sample!
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Implementing Compressive Sampling

a0 Devised a way to randomly sample 20% of the Nyquist
required samples and still detect the tremor frequencies
within 100mHz

= Requires post processing to randomly sample!

a0 Implement hardware on chip to “choose” samples in real
time
= Only write to memory the “chosen” samples
= Design random-like sequence generator
= Only convert the “chosen” samples

= Design low energy ADC
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Big Ideas

0 Wavelet transform
= Capture temporal data with fewer coetficients than STFT
0 Compressive Sampling

= Integrated sensing/sampling, compression and processing

= Based on sparsity and incoherency
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Admin

0 Tania extra office hours

= Monday 1-3pm

0 Tuesday lecture
= Review

s Final exam details

0 Project
s Due 4/24
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