ESE 531: Digital Signal Processing

Lec 23: April 19, 2018

Wavelet Transform, Compressive Sensing
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Previously

o Today
= Wavelet Transform

= Comptessive Sampling/Sensing
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Wavelet Transform
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Motivation

o Some signals obviously have spectral characteristics
that vary with time

Criticism of Fourier Spectrum

eelsieeels

o It’s giving you the spectrum of the ‘whole time-
series’

0 Which is OK if the time-series is stationary. But
what if its not?

0 We need a technique that can “march along” a time
series and that is capable of:
= Analyzing spectral content in different places

= Detecting sharp changes in spectral character

eelsieeels

Fourier vs. Wavelet

0 PFourier Analysis is based on an indefinitely long
cosine wave of a speciﬁc frequency

VY

0 Wavelet Analysis is based on an short duration
wavelet of a specific center frequency
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Wavelet Transform

o All wavelet derived from mother wavelet
1 t—1
N=—y —
v, (1) 7 w[ g ]
0 Must satisfy

/ |\I/(t)‘2dt =1 = unitnorm

o0

Examples of Wavelets

seseees

Mexican Hat
T(t) = (1 —t2)e /2

NV

Haar

-1 0<t<}
Yt)y=¢< 1 s<t<l
0 otherwise

N

}_l
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Wavelet — Scaled and Shifted

ormalization o

~ shift in time
I—T

W —

S,

v (1) =

-

change in scale:
big s means long
wavelength
wavelet with
scale, s and time, ©

Mother wavelet

Shannon Wavelet
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W (1) = %W(%j _

o W(t) = 2 sinc(2t) — sinc(t)

mother wavelet |
0s |
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Wavelet Transform

time-series

\
y(s,0)= [ f(OW, (0)di

N\

coefficient of wavelet
with wavelet with
scale, s and time, © scale, s, and shift, T




Inverse Wavelet Transform

oelsiese’s

0 Build up a time-series as sum of wavelets of
different scales, s, and positions, t

O = [ [vs, 0w, , (1)duds
f

time-series wavelet with

scale, s and time, ©

coefficients
of wavelets

Wavelet Transform

oelsiese’s

o Determining the wavelet coefficients for a fixed
scale, s, can be thought of as a filtering operation

y(s,0)= [ [ ()t
v, ()= [ FOW ()dt= ()= (1)
o where

W ()= iwg)

Js

-1

Shannon Wavelet . (1) = %W(—j
s s =

seseees

o W(t) = 2 sinc(2t) — sinc(t)

mother wavelet

S —
]
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Fourier spectrum of Shannon Wavelet
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.1“50 .
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0
n an

frequency, ®

0 Wavelet coefficients are a result of bandpass
filtering

Discrete wavelets:

eelsieeels

a Scale wavelets only by powers of 2
. siZZj

0 And shifting by multiples of s; for each
successive scale
[] Ti,k =2k

0 Then Y(S;, Ty = Y

= wherej=1,2,...0,k=-0...-2-10,1,2,...0

1 t-k27
= HY —_\dt
Vi ~ ff() ( Y )

Discrete Wavelet Transform

eelsieeels

0 The factor of two scaling means that the spectra of
the wavelets divide up the frequency scale into
octaves (frequency doubling intervals)
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Discrete Wavelet Transform
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o As we saw previously, the coefficients of ¥ is just
the band-pass filtered time-series, where ¥ is the
wavelet, now viewed as the impulse response of a
bandpass filter.
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Digital Wavelet as Multirate Filter Bank

0 Repeat recursively!
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t Coiflet low pass filter
i 15
1 p N N 1
05 / A\ 1
/ \
) / \ - ]
[ "
05 5 3 5 B 0 12
time, t
Coiﬂqt high—pelgs filter i . . .
05 1
0 ]
05 J
Kl 4
15 . . . . .
1] 2 4 6 . [ 10 12
time, t
From http://en.wikipedia.org/wiki/Coiflet

Discrete Wavelet Transform

oelsiese’s

o As we saw previously, the coefficients of V¥ is just
the band-pass filtered time-series, where ¥ is the
wavelet, now viewed as the impulse response of a
bandpass filter.

AR

Vg Vaw,, Yo, @y
with
low-pass filter X ¥ \ «
\
Vi, Wy
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Digital Wavelet as Multirate Filter Bank

| time-series of length N |

Y(s,t): N/2 coefficients
Y(s,,t): N/4 coefficients

Y(s,,t): N/8 coefficients

Total: N coefficients

.
.

N W o= oo
/

/

@ , . , , ,
i 1 2 3 4 5
frequency, ®

Spectrum of wavelet
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time-series
0 4
2 . . . . .
0 100 200 300 400 500 600
1 T T T T T
stage 1 - hi
U .
1 . . . . \
1] 100 200 300 400 500 600
5 T T T T T
stage 1 - lo
R =
5 . . . . .
o 100 200 300 400 500 600
& T T T T T T
Stage 2 lo
0 W\(LWMWVWWW 1
5 . . L . . .
0 20 40 B0 80 100 120 140
2 T T
U .
2 i
4 . . . . . .
0 20 40 B0 80 100 120 140
5 T T T T T T
stage 3 - lo
0 *
5 \ \ , \ . \
0 20 40 B0 80 100 120 140
5 T T T T
Stage 4 lo
0 4
5 . , . . . \
0 5 10 15 20 25 30 35
4 _ — _ _ .
stage 5 - hi
2
0

P . . . . .
0 5 10 15 20 25 30
Stage 5 - lo
0
P . . . . .
0 5 10 15 20 25 30

& T T T T
Stage 1 lo
0 B
5 . \ . \ .
0 50 100 150 200 250 300
2 T T T T
stage 2 - hi
0 B
2 . \ . \ .
0 50 100 150 200 250 300
5 T T T T T
stage 2 - lo
0 MMWWN\NMM\ —
5 . . . , .
0 50 100 150 200 250 300
5 T T T T
Stage 3 lo
U .
5 . . . L . .
0 10 20 30 40 50 60 70
4 . : . :
stage 4 - hi
2 - .
0 B
P . . . . 1 .
0 10 20 30 40 50 60 70
5 T T T T T T
stage 4 - lo
0 —*
5 \ \ \ \ . \
0 10 20 30 40 50 60 70
2 T T
Stage 5 lo
I 0 4
2 . \
0 5 10 15
05 . T y _ _
Stage 6 - hi
0 4
05F -
A . \ . . . .
0 2 4 B 8 10 12 14
1 : : : : . :
@ stage 6 - lo ]
At 4
P . . . . . .
0 2 4 B 8 10 12 14




Putting it all together ... )

Iy(s;,D)I?
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Compressive Sampling

&Penn

short
wavelengths
2
3
g
5 4
12}
5
[
long 7
wavelengths
time, t
¢ Compressive Sampling

Anything

T
0

0 What is the rate you need to sample at?
= At least Nyquist
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Compressive Sampling

Something

T
0

0 What is the rate you need to sample at?
= Maybe less than Nyquist...
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First: Compression

eelsieeels

0 Standard approach

= First collect, then compress

= Throw away unnecessary data

1001101001101
0001001110101
0100110100010
0010101101010
)| 1010101100101
1101110111010
1010110110110
10100111111
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First: Compression

eelsieeels

o Examples

= Audio — 10x
» Raw audio: 44.1kHz, 16bit, stereo = 1378 Kbit/sec
= MP3: 44.1kHz, 16 bit, stereo = 128 Kbit/sec

= Images — 22x
« Raw image (RGB): 24bit/pixel
= JPEG: 1280x960, normal = 1.09bit/pixel

= Videos — 75x
= Raw Video: (480x360)p/frame x 24b/p x 24frames/s + 44.1kHz

x 16b x 2 = 98,578 Kbit/s

= MPEG#4: 1300 Kbit/s
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First: Compression

0 Almost all compression algorithm use transform
coding
= mp3: DCT
= JPEG: DCT
= JPEG2000: Wavelet
= MPEG: DCT & time-difference
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First: Compression

a Almost all compression algorithm use transform
coding
= mp3: DCT
= JPEG: DCT

= JPEG2000: Wavelet »
= MPEG: DCT & time-difference
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Sparse Transform

K ““W"W’“W’W“W*““'M!v'*w

I L T T TR

DCT l

O
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Sparse Transform
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Compressive Sensing/Sampling

eelsieeels

0 Standard approach

= First collect, then compress

= Throw away unnecessary data

1001101001101
0001001110101
0100110100010
0010101101010
» 1010101100101
1101110111010
1010110110110
10100111111
101000110100
(_-JCompressmn
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Compressive Sampling

eelsieeels

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in some cases
exactly recover

43
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Compressive Sampling

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in some cases
exactly recover

Sparse signal in time Frequency spectrum

N ) 0 05 1
Time ()
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Compressive Sampling

a Sample at lower than the Nyquist rate and still
accurately recover the signal, and in some cases
exactly recover

Undersampled in time
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Compressive Sampling

o Sample at lower than the Nyquist rate and still
accurately recover the signal, and in some cases
exactly recover

Undersampled in time

E N -
Time ()

46

45
: Compressive Sampling
o Sample at lower than the Nyquist rate and still
accurately recover the signal, and in some cases
exactly recover
P Undersampled in frequency
Undersampled in time (reconstructed in time with IFFT)
47

eelsieeels

Compressive Sampling

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in some cases
exactly recover

Undersampled in frequency

Undersampled in time (reconstructed in time with IFFT)

[ ) o [ C R )

£ £
Time (5 Time (5)

Requires sparsity and incoherent sampling
48
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Compressive Sampling: Simple Example

Time (s)
Exact and Recovered Frequency Spectrums
*

0,08

0,08
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Compressive Sampling

Input signal with undersampled measurements circled (~17.5% of Nyquist samples)

MWJW AR - o

T e T " = M>Cp(®,¥)Slog N

i 1 o Recover with linear
A A e
e “WM Mﬂww

0 Sense signal randomly M

minZIg(w)I subjectto g(tn) = ftm), Mm=1,.,M
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Example: Sum of Sinusoids

Recovered spectrum using L1 minimization

ﬂ"'WM iy
M\ m WW

Froquency ()

o Two relevant “knobs”
= percentage of Nyquist
samples as altered by
adjusting optimization
factor, C

= input signal duration, T
= Data block size

Power (d8)
s

52

Compressive Sampling

K K

=1

o Sense signal randomly M
times
" M>CuX®,¥)SlogN

o Recover with linear
program

minZIg(m)l subjectto g(tn) = fty), m=1,..,M

fw)= Za&(w ) c»f(t) Zue"‘”

Example: Increasing C

Rec: d p ctrur mp erforr &e for ine cvens\ng samples
“

| B

{ w * ferrmax Within 10 mHz

| g  Permax decreasing
E ( ﬂgm

|

EED % w % Bl
o0

Example: Increasing C
M } r;{‘zg;’ﬁﬂ 2l
i [ o
Example: Increasing T
i T ’NH\"H‘\ L L L
EAv il M=V




Example: Increasing T

Recovered spectrum performance for increasing T

o %
u— 1 .

0 1 * forrmax decreasing

o ] = " Perr,max decreasing
g e
€ £

| 6

o

- 4
o 2|
e e e e W w0 w w8 w W @
Time (s) Time (s)
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: Compressive Sampling: Real Data
Time Signat Subject & Reﬂc;veved Frequency Spectrum: Subject . Time Signal: Subject 8 Runcun!vemd Frequency Spectrum: Subject 8
T " Tt St " ey te) "
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¢ Biometric Example: Parkinson’s Tremors
Frequency error in tremor detection
B / = Tremors detected
® / within 100 mHz
i \ / “ randomly sample
A \ 20% of the
- \ Nyquist required
I \ samples
2 4 5 O - 7
sufct e
Requires post processing to randomly sample!
60
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¢ Biometric Example: Parkinson’s Tremors
Subject 2 o5, Sublecta o, Sublects 0 6 Subjects of real tremor
0 o6 data
= Zos §ij = collected using low intensity
B 2o i g e e
o5 o - tape attached to the subjects’
finger recording the finger

o w w W ] velocity

Frequency (Hz) Frequency (Hz) Frequency (Hz) N
. Squbj:cy( 6 . Squmezjt 7 stmecyt 8 - ":1"( ::‘;"*61::‘::;:‘ tremor
o o » Subject 8 shows activity at
Jos o - two higher frequencies
Sos : ., 209 = Subject 4 appears to have two.
203 H 2 oz tremors very close to each
€ oz € oo <., other in frequency
° i

W w w O] O]

Frequency (Hz) Frequency (Hz) Frequency (Hz)
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¢ Biometric Example: Parkinson’s Tremors
208 ]

N i /

e . 1 F I
2k ikl ‘ I M | 4G
il 0¥
Y i ,l 11

B . ?

i T } " :. ‘ 1
u 5T !
'M i A1 WI‘”’W & H | '\ \“

LR il Jy Ll
"C=10.5, T=30
20% Nyquist required samples
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¢ Implementing Compressive Sampling

0 Devised a way to randomly sample 20% of the Nyquist
required samples and still detect the tremor frequencies
within 100mHz
= Requires post processing to randomly sample!

0 Implement hardware on chip to “choose” samples in real
time
= Only write to memory the “chosen” samples

= Design random-like sequence generator
= Only convert the “chosen” samples
= Design low energy ADC
61
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Big Ideas

o Wavelet transform

= Capture temporal data with fewer coefficients than STFT
0 Compressive Sampling

= Integrated sensing/sampling, comptession and processing

= Based on sparsity and incoherency
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Admin

0 Tania extra office hours
= Monday 1-3pm

0 Tuesday lecture
= Review

= Final exam details

0 Project
= Due 4/24
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