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ESE 531: Digital Signal Processing 

Lec 23: April 19, 2018 
Wavelet Transform, Compressive Sensing 

Penn ESE 531 Spring 2018 – Khanna 

Previously 

!  Today  
"  Wavelet Transform 
"  Compressive Sampling/Sensing 
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Wavelet Transform 

Motivation 

!  Some signals obviously have spectral characteristics 
that vary with time 

Criticism of Fourier Spectrum 

!  It’s giving you the spectrum of the ‘whole time-
series’ 

!  Which is OK if the time-series is stationary.  But 
what if its not? 

!  We need a technique that can “march along” a time 
series and that is capable of: 
"  Analyzing spectral content in different places 
"  Detecting sharp changes in spectral character 

Fourier vs. Wavelet 

!  Fourier Analysis is based on an indefinitely long 
cosine wave of a specific frequency 

!  Wavelet Analysis is based on an short duration 
wavelet of a specific center frequency 
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Wavelet Transform 

!  All wavelet derived from mother wavelet 

!  Must satisfy 

Examples of Wavelets 
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change in scale: 
big s means long 

wavelength

normalization

wavelet with 
scale, s and time, τ

shift in time

Mother wavelet

Wavelet – Scaled and Shifted 

mother wavelet 

τ=5, s=2 

time 

Shannon Wavelet 

!  Ψ(t) = 2 sinc(2t) – sinc(t) 
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wavelet with 
scale, s, and shift, τ

time-series

coefficient of wavelet 
with 

scale, s and time, τ

Wavelet Transform 

γ (s,t) = f (t)Ψs,τ∫ (t)dt
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wavelet with 
scale, s and time, τ

time-series

coefficients 
of wavelets

Inverse Wavelet Transform 

!  Build up a time-series as sum of wavelets of 
different scales, s, and positions, t  

Wavelet Transform 

!  Determining the wavelet coefficients for a fixed 
scale, s, can be thought of as a filtering operation 

!  where 
 
 

γ (s,t) = f (t)Ψs,τ∫ (t)dt

γ s (t) = f (t)Ψs (t)dt∫ = f (t)∗Ψs (t)

Ψs (t) =
1
s
Ψ( t
s
)

mother wavelet 

τ=5, s=2 

time 

Shannon Wavelet 

!  Ψ(t) = 2 sinc(2t) – sinc(t) 
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frequency, ω

Fourier spectrum of Shannon Wavelet 

!  Wavelet coefficients are a result of bandpass 
filtering 

Discrete wavelets: 

!  Scale wavelets only by powers of 2 
"  sj=2j 

!  And shifting by multiples of sj for each 
successive scale 
"  τj,k = 2jk 

!  Then γ(sj, τj,k) = γjk 

"  where j = 1, 2, …∞, k = -∞… -2, -1, 0, 1, 2, …∞ 

γ j ,k =
1

2 j
f (t)Ψ∫ t − k2 j

2 j
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟dt

Discrete Wavelet Transform 

!  The factor of two scaling means that the spectra of 
the wavelets divide up the frequency scale into 
octaves (frequency doubling intervals) 
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Discrete Wavelet Transform 

!  As we saw previously, the coefficients of Ψ is just 
the band-pass filtered time-series, where Ψ is the 
wavelet, now viewed as the impulse response of a 
bandpass filter. 
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Discrete Wavelet Transform 

!  As we saw previously, the coefficients of Ψ is just 
the band-pass filtered time-series, where Ψ is the 
wavelet, now viewed as the impulse response of a 
bandpass filter. 
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Digital Wavelet as Multirate Filter Bank 
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!  Repeat recursively! 
time-series of length N 

HP LP 

↓2 ↓2 

HP LP 

↓2 ↓2 

HP LP 

↓2 ↓2 

…

γ(s1,t) 

γ(s2,t) 

γ(s3,t) 

γ(s1,t): N/2 coefficients 

γ(s2,t): N/4 coefficients 

γ(s2,t): N/8 coefficients 

Total: N coefficients 

Digital Wavelet as Multirate Filter Bank 

Coiflet low pass filter 

From http://en.wikipedia.org/wiki/Coiflet 

Coiflet high-pass filter 
time, t 

time, t 

Spectrum of low pass filter 

frequency, ω
Spectrum of wavelet 

frequency, ω
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stage 1 - hi 

time-series 

stage 1 - lo 

stage 2 - hi 

Stage 1 lo 

stage 2 - lo 

stage 3 - hi 

Stage 2 lo 

stage 3 - lo 

stage 4 - hi 

Stage 3 lo 

stage 4 - lo 

stage 5 - hi 

Stage 4 lo 

Stage 5 - lo 

Stage 6 - hi 

Stage 5 lo 

stage 6 - lo 
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Putting it all together …

time, t

sc
al

e

long
wavelengths

short
wavelengths

|γ(sj,t)|2 Compressive Sampling 

Compressive Sampling 

!  What is the rate you need to sample at? 
"  At least Nyquist 

34 

t 
T 

0 

Anything 
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Compressive Sampling 

!  What is the rate you need to sample at? 
"  Maybe less than Nyquist… 
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t 
T 

0 

Something 
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First: Compression 

!  Standard approach 
"  First collect, then compress  

"  Throw away unnecessary data 
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First: Compression 

!  Examples 
"  Audio – 10x 

"  Raw audio: 44.1kHz, 16bit, stereo = 1378 Kbit/sec 
"  MP3: 44.1kHz, 16 bit, stereo = 128 Kbit/sec 

"  Images – 22x 
"  Raw image (RGB): 24bit/pixel 
"  JPEG: 1280x960, normal = 1.09bit/pixel 

"  Videos – 75x 
"  Raw Video: (480x360)p/frame x 24b/p x 24frames/s + 44.1kHz 

x 16b x 2 = 98,578 Kbit/s 
"  MPEG4: 1300 Kbit/s 
 

37 
Penn ESE 531 Spring 2018 – Khanna 
Adapted from M. Lustig, EECS Berkeley 



7 

First: Compression 

38 

!  Almost all compression algorithm use transform 
coding  
"  mp3: DCT  
"  JPEG: DCT  
"  JPEG2000: Wavelet  
"  MPEG: DCT & time-difference 
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First: Compression 
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!  Almost all compression algorithm use transform 
coding  
"  mp3: DCT  
"  JPEG: DCT  
"  JPEG2000: Wavelet  
"  MPEG: DCT & time-difference 
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Sparse Transform 
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Sparse Transform 
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Compressive Sensing/Sampling 

!  Standard approach 
"  First collect, then compress  

"  Throw away unnecessary data 
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Compressive Sampling 

!  Sample at lower than the Nyquist rate and still 
accurately recover the signal, and in some cases 
exactly recover 

43 
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Sparse signal in time Frequency spectrum 

Compressive Sampling 

!  Sample at lower than the Nyquist rate and still 
accurately recover the signal, and in some cases 
exactly recover 
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Undersampled in time 

Compressive Sampling 

!  Sample at lower than the Nyquist rate and still 
accurately recover the signal, and in some cases 
exactly recover 
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Undersampled in time 

Compressive Sampling 

!  Sample at lower than the Nyquist rate and still 
accurately recover the signal, and in some cases 
exactly recover 
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Undersampled in time Undersampled in frequency 
(reconstructed in time with IFFT) 

Compressive Sampling 

!  Sample at lower than the Nyquist rate and still 
accurately recover the signal, and in some cases 
exactly recover 
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Undersampled in time 

Compressive Sampling 

!  Sample at lower than the Nyquist rate and still 
accurately recover the signal, and in some cases 
exactly recover 
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Undersampled in frequency 
(reconstructed in time with IFFT) 

Requires sparsity and incoherent sampling 

Compressive Sampling: Simple Example 

49 
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Compressive Sampling 

!  Sense signal randomly M 
times 
"   M > C·μ2(Φ,Ψ)·S·log N 

!  Recover with linear 
program 
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Compressive Sampling 

!  Sense signal randomly M 
times 
"   M > C·μ2(Φ,Ψ)·S·log N 

!  Recover with linear 
program 
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Example: Sum of Sinusoids 

!  Two relevant “knobs” 
"  percentage of Nyquist 

samples as altered by 
adjusting optimization 
factor, C  

"  input signal duration, T 
"  Data block size  
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C=1 
7% 

C=2 
14% 

C=2.5 
17.5% 

C=3 
20.9% 

C=5 
34.7% 

C=7.5 
51.9% 

Example: Increasing C 
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#  ferr,max within 10 mHz 
# perr,max decreasing 

Example: Increasing C 
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T=5 T=10 T=15 

T=30 T=60 T=120 

 
Example: Increasing T 

55 
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#  ferr,max decreasing 
# perr,max decreasing 
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Example: Increasing T Biometric Example: Parkinson’s Tremors 

!  6 Subjects of real tremor 
data 

"  collected using low intensity 
velocity-transducing laser 
recording aimed at reflective 
tape attached to the subjects’ 
finger recording the finger 
velocity 

"  All show Parkinson’s tremor 
in the 4-6 Hz range.   

"  Subject 8 shows activity at 
two higher frequencies 

"  Subject 4 appears to have two 
tremors very close to each 
other in frequency  

57 
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Compressive Sampling: Real Data 

# C=10.5, T=30 
#  20% Nyquist required samples  

Biometric Example: Parkinson’s Tremors 
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# Tremors detected 
within 100 mHz 

#  randomly sample 
20% of the 
Nyquist required 
samples 

Biometric Example: Parkinson’s Tremors 
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Requires post processing to randomly sample! 

Implementing Compressive Sampling 

!  Devised a way to randomly sample 20% of the Nyquist 
required samples and still detect the tremor frequencies 
within 100mHz 
"  Requires post processing to randomly sample! 

!  Implement hardware on chip to “choose” samples in real 
time 
"  Only write to memory the “chosen” samples 

"  Design random-like sequence generator 
"  Only convert the “chosen” samples 

"  Design low energy ADC 

61 
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Big Ideas 
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!  Wavelet transform 
"  Capture temporal data with fewer coefficients than STFT 

!  Compressive Sampling 
"  Integrated sensing/sampling, compression and processing 
"  Based on sparsity and incoherency 

Admin 

!  Tania extra office hours 
"  Monday 1-3pm 

!  Tuesday lecture 
"  Review 
"  Final exam details 

!  Project  
"  Due 4/24 
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