ESE 531: Digital Signal Processing Lec 2: January 16, 2018 Discrete Time Signals and Systems

Penn ESE 531 Spring 2018 - Khanna

Complex Exponentials Complex sinusoid $e^{j(\omega n + \phi)}$ is of the form $e^{\text{Purely Imaginary Numbers}}$ Generalize to $e^{\text{General Complex Numbers}}$ Consider the general complex number $z = |z| e^{j\omega}$, $z \in \mathbb{C}$ |z| = magnitude of z $\omega = \angle(z)$, phase angle of zCan visualize $z \in \mathbb{C}$ as a point in the complex plane

Property #2: Periodicity of Sinusoids

- $\qquad \qquad \text{Consider } x_1[n] = e^{j(\omega n + \phi)} \text{ with frequency } \omega = \frac{2\pi k}{N}, \quad k,N \in \mathbb{Z} \text{ (harmonic frequency)}$
- \blacksquare It is easy to show that $\underline{x_1}$ is periodic with period N, since $x_1[n+N] = e^{i(\omega(n+N)+\phi)} = e^{i(\omega n+\omega N+\phi)} = e^{i(\omega n+\phi)} = e^{i(\omega n+\phi)} e^{i(\omega N)} = e^{i(\omega n+\phi)} e^{i(\frac{\pi k}{2}N)} = x_1[n] \checkmark$
- \blacksquare Ex: $x_1[n]=\cos(\frac{2\pi 3}{16}n)$, N=16

 \blacksquare Note: x_1 is periodic with the (smaller) period of $\frac{N}{k}$ when $\frac{N}{k}$ is an integer

Penn ESE 531 Spring 2018 - Khanna

Aperiodicity of Sinusoids

 $\qquad \qquad \text{Consider } x_2[n] = e^{j(\omega n + \phi)} \text{ with frequency } \omega \neq \frac{2\pi k}{N}, \quad k,N \in \mathbb{Z} \text{ (\underline{not harmonic frequency)}}$

Penn ESE 531 Spring 2018 - Khanna

Aperiodicity of Sinusoids

- Consider $x_2[n] = e^{j(\omega n + \phi)}$ with frequency $\omega \neq \frac{2\pi k}{N}$, $k, N \in \mathbb{Z}$ (not harmonic frequency)
- Is ro periodic?

 $x_2[n+N] = e^{j(\omega(n+N)+\phi)} = e^{j(\omega n + \omega N + \phi)} = e^{j(\omega n + \phi)} e^{j(\omega N)} \neq x_1[n] \quad \text{NO!}$

Penn ESE 531 Spring 2018 - Khanna

Aperiodicity of Sinusoids

- $\qquad \qquad \text{Consider } x_2[n] = e^{j(\omega n + \phi)} \text{ with frequency } \omega \neq \tfrac{2\pi k}{N}, \quad k,N \in \mathbb{Z} \text{ (not harmonic frequency)}$
- Is x_2 periodic?

 $x_2[n+N] = e^{j(\omega(n+N)+\phi)} = e^{j(\omega n + \omega N + \phi)} = e^{j(\omega n + \phi)} \, e^{j(\omega N)} \neq x_1[n] \quad \text{NO!}$

■ Ex: $x_2[n] = \cos(1.16 \, n)$

 \blacksquare If its frequency ω is not harmonic, then a sinusoid <code>oscillates</code> but is <code>not periodic!</code>

Penn ESE 531 Spring 2018 - Khanna

Harmonic Sinusoids

 $e^{j(\omega n + \phi)}$

■ Semi-amazing fact: The **only** periodic discrete-time sinusoids are those with **harmonic frequencies**

 $\omega = \frac{2\pi k}{N}, \quad k,N \in \mathbb{Z}$

- Which means that
 - Most discrete-time sinusoids are not periodic!
 - The harmonic sinusoids are somehow magical (they play a starring role later in the DFT)

Penn ESE 531 Spring 2018 - Khanna

Periodic or not?

- $\cos(5/7\pi n)$
- $\cos(\pi/5n)$
- □ What are N and k? (I.e How many samples is one period?

Penn ESE 531 Spring 2018 - Khanna

Periodic or not? $\cos(5/7 \pi n)$ = N=14, k=5 $= \cos(5/14*2 \pi n)$ = Repeats every N=14 samples $= \cos(\pi/5n)$ = N=10, k=1 $= \cos(1/10*2 \pi n)$ = Repeats every N=10 samples

Linearity Example: Moving Average

$$x[n] \longrightarrow \mathcal{H} \longrightarrow y[n] = \frac{1}{2}(x[n] + x[n-1])$$

 $\qquad \textbf{scaling: (Strategy to prove - Scale input x by $\alpha \in \mathbb{C}$, compute output y via the formula at top, and verify that it is scaled as well)}$

• Let

$$x'[n] = \alpha x[n], \quad \alpha \in \mathbb{C}$$

- \bullet Let y' denote the output when x' is input (that is, $y'=\mathcal{H}\{x'\})$
- Then

$$y'[n] = \frac{1}{2}(x'[n] + x'[n-1])$$

Penn ESE 531 Spring 2018 - Khanna

Linearity Example: Moving Average

$$x[n] \longrightarrow \hspace{1cm} \mathcal{H} \longrightarrow y[n] = \tfrac{1}{2}(x[n] + x[n-1])$$

- $\qquad \textbf{s Scaling: } (\text{Strategy to prove } \text{Scale input } x \text{ by } \alpha \in \mathbb{C}, \text{ compute output } y \text{ via the formula at top, and verify that it is scaled as well)}$
 - Let
- $x'[n] \ = \ \alpha x[n], \quad \alpha \in \mathbb{C}$
- \bullet Let y' denote the output when x' is input (that is, $y'=\mathcal{H}\{x'\})$
- Then

$$y'[n] \ = \ \frac{1}{2}(x'[n] + x'[n-1]) \ = \ \frac{1}{2}(\alpha x[n] + \alpha x[n-1]) \ = \ \alpha \left(\frac{1}{2}(x[n] + x[n-1])\right) \ = \ \alpha y[n] \ \checkmark$$

Penn ESE 531 Spring 2018 - Khanna

Linearity Example: Moving Average

$$x[n] \longrightarrow \mathcal{H} \longrightarrow y[n] = \frac{1}{2}(x[n] + x[n-1])$$

- Additivity: (Strategy to prove Input two signals into the system and verify that the output
 equals the sum of the respective outputs)
- Let
- $x'[n] = x_1[n] + x_2[n]$
- \bullet Let $y'/y_1/y_2$ denote the output when $x'/x_1/x_2$ is input

Penn ESE 531 Spring 2018 - Khanna

Linearity Example: Moving Average

$$x[n] \longrightarrow \hspace*{-3mm} \mathcal{H} \longrightarrow y[n] = \tfrac{1}{2}(x[n] + x[n-1])$$

- Additivity: (Strategy to prove Input two signals into the system and verify that the output equals the sum of the respective outputs)
 - Let
- $x'[n] = x_1[n] + x_2[n]$
- \bullet Let $y^{\prime}/y_1/y_2$ denote the output when $x^{\prime}/x_1/x_2$ is input
- Then

$$y'[n] = \frac{1}{2}(x'[n] + x'[n-1]) = \frac{1}{2}(\{x_1[n] + x_2[n]\} + \{x_1[n-1] + x_2[n-1]\})$$

Penn ESE 531 Spring 2018 - Khanna

Linearity Example: Moving Average

$$x[n] \longrightarrow \mathcal{H} \longrightarrow y[n] = \frac{1}{2}(x[n] + x[n-1])$$

- Additivity: (Strategy to prove Input two signals into the system and verify that the output
 equals the sum of the respective outputs)
 - Let
- $x'[n] = x_1[n] + x_2[n]$
- \bullet Let $y^{\prime}/y_1/y_2$ denote the output when $x^{\prime}/x_1/x_2$ is input
- Then

$$\begin{array}{rcl} y'[n] & = & \frac{1}{2}(x'[n]+x'[n-1]) & = & \frac{1}{2}(\{x_1[n]+x_2[n]\}+\{x_1[n-1]+x_2[n-1]\}) \\ \\ & = & \frac{1}{2}(x_1[n]+x_1[n-1])+\frac{1}{2}(x_2[n]+x_2[n-1]) & = & y_1[n]+y_2[n] \ \checkmark \end{array}$$

Penn ESE 531 Spring 2018 - Khanna

Example: Squaring is Nonlinear

$$x[n] \longrightarrow \mathcal{H} \longrightarrow y[n] = (x[n])^2$$

- Additivity: Input two signals into the system and see what happens
 - Le
- $y_1[n] = (x_1[n])^2$, $y_2[n] = (x_2[n])^2$
- Set
- $x'[n] = x_1[n] + x_2[n]$
- Then

$$y'[n] = (x'[n])^2 = (x_1[n] + x_2[n])^2 = (x_1[n])^2 + 2x_1[n]x_2[n] + (x_2[n])^2 \neq y_1[n] + y_2[n]$$

Nonlinear

Penn ESE 531 Spring 2018 - Khanna

Time-Invariant Systems A system $\mathcal H$ processing infinite-length signals is **time-invariant** (shift-invariant) if a time shift of the input signal creates a corresponding time shift in the output signal $x[n] \qquad \mathcal H \qquad y[n]$ $x[n-q] \qquad \mathcal H \qquad y[n-q]$ Intuition: A time-invariant system behaves the same no matter when the input is applied A system that is not time-invariant is called **time-varying**Penn ESE 531 Spring 2018 - Khanna

Examples

- □ Causal? Linear? Time-invariant? Memoryless? BIBO Stable?
- □ Time Shift:
 - y[n] = x[n-m]
- □ Accumulator:
 - $y[n] = \sum_{k=-\infty}^{n} x[k]$
- □ Compressor (M>1):

$$y[n] = x[Mn]$$

Penn ESE 531 Spring 2018 - Khanna

Big Ideas

- □ Discrete Time Signals
 - Unit impulse, unit step, exponential, sinusoids, complex sinusoids
 - Can be finite length, infinite length
 - Properties
 - Even, odd, causal
 - Periodicity and aliasing
 - Discrete frequency bounded!
- □ Discrete Time Systems
 - Transform one signal to another
 - $x \longrightarrow \mathcal{H} \longrightarrow y$
 - Properties
 - Linear, Time-invariance, memoryless, causality, BIBO stability

 $y = \mathcal{H}\{x\}$

Penn ESE 531 Spring 2018 - Khanna

Admin

- □ Enroll in Piazza site:
 - piazza.com/upenn/spring2018/ese531
- □ HW 1 out after class

Penn ESE 531 Spring 2018 - Khanna

14