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Discrete Time Signals
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Lecture Outline

oelsiese’s

0 Discrete Time Signals
o Signal Properties

o Discrete Time Systems
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Signals

Signal (n): A detectable physical quantity ...by which messages or information
can be transmitted (Merriam-Webster)

DEFINITION

0 Signals carry information
0 Examples:

= Speech signals transmit language via acoustic waves

Radar signals transmit the position and velocity of targets via electromagnetic
waves

Electrophysiology signals transmit information about processes inside the
body

Financial signals transmit information about events in the economy

0 Signal processing systems manipulate the information cartied by signals

Penn ESE 531 Spring 2018 - Khanna

Signals are Functions

A signal is a function that maps an independent variable to a dependent variable.

8

m Signal z[n]: each value of n produces the value z[n]
m In this course, we will focus on discrete-time signals:
 Independent variable is an integer: n € Z  (will refer to as time

o Dependent variable is a real or complex number: z[n] € R or C

-101234567
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A Menagerie of Signals

m Google Share daily share price for 5 months

Excerpt from Shakespeare's Hamlet
04
02
o
02
0 100 2000 3000 4000 5000 8000 7000
n

ol
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: Plotting Signals Correctly

.

= In a discrete-time signal z[n], the independent variable . is discrete (integer)

command and not the plot command

u Correct:

= Incorrect:

= To plot a discrete-time signal in a program like Matlab, you should use the stem or similar

a

{ Unit Sample

The delta function (aka unit impulse)  [n] {(1] - o
otherwise

DEFINITION

- -10 -5 0 5 10
n

m The shifted delta function 6[n —m| peaks up at n = m; here m =9

= 1
1
2%
S

Unit Step

.

The unit step

DEFINITION

_J1 n>0
0 n<0

e ... ]I

3 10 0
n

= The shifted unit step u[n — m] jumps from 0 to 1 at n.=m; here m = 5

1 =10 -5 0 5 10
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Real Exponential

The real exponential r[n] =a", a € R, a >0

DEFINITION

m For a > 1, r[n] shrinks to the left and grows to the right; here a = 1.1

"’l""E””ITTT””Hl

10

m For 0 < a < 1, r[n] grows to the left and shrinks to the right; here a = 0.9
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Unit Pulse
3
s 0 n<h
3 The unit pulse (aka boxcar) pln]={1 N, <n<N,
8 0 n>N,
 Ex: pln] for N, = —5 and Ny = 3
|
=
15 -10 -5 ) 15
B
m One of many different formulas for the unit pulse
p[n] = uln — Ni] —uln — (N2 +1)]
Penn ESE 531 Spring 2018 - Khanna 10
Sinusoids
= There are two natural real-valued sinusoids:  cos(wn + ¢) and sin(wn + &)
= Frequency: w (units: radians/sample)
m Phase: ¢ (units: radians)
u cos(wn)
.
;
3 *%MWH—UL
E
-J|5 -10 -5 0 5 10 15
2
u sin(wn)
.
BN ERAAT) 2111 i)
= T8 SIS IENE)
e
:
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Sinusoid Examples

oelsiese’s

) AT

Sinusoid in Matlab

oelsiese’s

m It's easy to play around in Matlab to get comfortable with the properties of sinusoids

N=36;
n=0:N-1;
omega=pi/!
phi=pi/4;
x=cos(omega*n-+phi);
stem(n,x)

6;

) 1
m sin(0n) T
s 10 s o 5 10 5
- nlin ¥ 3B A VMY
s 10 = 9 H 10 s
QITTTTITTITIIIT LI
m cos(mn)
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¢ Complex Sinusoid
m The complex-valued sinusoid combines both the cos and sin terms (via Euler's identity)
&/(“n+6) = cos(wn + ¢) + jsin(wn + ¢)
Jeon = 1 ) Re(e/™) = cog(wn)
R AR i sraarseaortess
LT | S PRSP S S P A3 P
Leion=un ) Im(ei") = sin(wn)
ngumﬂmj flr, g, ol ol
e e I
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¢ Negative Frequency
u Negative frequency is nothing to be afraid of! Consider a sinusoid with a negative frequency —w
eI = e=iwn = cos(—wn) + jsin(—wn) = cos(wn) — j sin(wn)
u Also note: ¢/~ = g=dun = (gn)”
= Bottom line: negating the frequency is equivalent to complex conjugating a complex sinusoid,
which flips the sign of the imaginary, sin term
) Re(e/“™) = cog(wn) ) Re(e~i%™) = cog(wn)
SR A SRR . SUR . SO L JRUR 4§ SRR 4§ SRR 4§ SN
B e T
Im(e“”‘)": sin(wn) Tm(e~7%7) - sin(wn)
AR SRR 4 SO 4 TR 4 Lol ale gl ol
B PSS P S S A S} B SEMERS S PG P ARG 1)
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¢ Complex Sinusoid as Helix
¥
&/“nt9) = cos(wn + ¢) + jsin(wn + ¢)
s
= A complex sinusoid is a helix in 3D space (Re{},Im{},n)
© Real part (cos term) is the projection onto the Re{} axis
© Imaginary part (sin term) is the projection onto the Im{} axis
m Frequency w determines rotation speed and direction of helix
* w > 0 = anticlockwise rotation
© w < 0= clockwise rotation
Animation: https://upload.wikimedia.org/wikipedia/commons/4/41/Rising_circular.gif
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¢ Phase of a Sinusoid
m ¢ is a (frequency independent) shift that is referenced to one period of oscillation
1
N fellte 2111y 2111y
= cos (§n-0) 1 I L
s -10 -5 0 5 10 15
n
1
u cos(Zn— %) “%F'J‘U'T‘LFWF'LU‘L'WF"U‘U
s S0 = 0 5 10 s
n
o [ otlty 21110 217
u cos (n— F) =sin (%n) g SIITS SITS
-5 -10 -5 ’z 5 10 15
1
Ye1lte 1111 1111
u cos (En —2m) = cos (Zn) T IR SIS
s ED s 0 5 10 15
n
Penn ESE 531 Spring 2018 - Khanna 18




Complex Exponentials

u Complex sinusoid €/(“n+@) s of the form ePurely Imaginary Numbers

= Generalize to eGeneral Complex Numbers

m Consider the general complex number 2 =

z|e’, 2 € C

© |z| = magnitude of z
® w = /(2), phase angle of z
e Can visualize z € C as a point in the complex plane

1 531 Spring 2018 - Khanna 19

Complex Exponentials

.

= (j2en)" = |o]eien

= |z|™ is a real exponential envelope (a™ with a = |z[)

= €/“" is a complex sinusoid

2| <1 l2| >1
Re(z"), |2 <1 Re(z"), |2 > 1
3 ;
3 ]
Im(z"), |2 <1 Im(z"), |2 > 1
;ﬂf o e 3 . pette (384
ST et ttew ki ‘ R0
Bounded Unbounded
Penn ESE 531 Spring 2018 - Khanna 21

Signal Properties

& Penn.
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Complex Exponentials

u Complex sinusoid  /(7+9) is of the form ePurely Imeginary Numbers

u Generalize to ¢General Complex Numbers

m Consider the general complex number z = |z| e/, z € C

® |z| = magnitude of z
® w = /(z), phase angle of z
o Can visualize z € C as a point in the complex plane

= Now we have
= (lle’)" =

["(e7)" = |2|reden
o |z|" is a real exponential (a" with a = |2|)
e €/“" is a complex sinusoid

Penn ESE 531 Spring 2018 - Khanna 20

Digital Signals

gital signals are a special sub-class of discrete-time signals

« Independent variable is still an integer: n € Z

« Dependent variable is from a finite set of integers:  z[n] € {0,1,...,D — 1}

« Typically, choose D = 27 and represent each possible level of z[n] as a digital code with ¢ bits

« Ex: Digital signal with g = 2 bits = D = 27 = 4 levels

St [T,

-5 0 15
n

 Ex: Compact discs use g = 16 bits = D = 2° = 65536 levels

Penn ESE 531 Spring 2018 - Khanna 2

Finite/Infinite Length Sequences

= An infinite-length discrete-time signal z[n] is defined for all n € Z, i.e., —00 < n < 0

z[n]

0
n

= A finite-length discrete-time signal z[n] is defined only for a finite range of Ny <n < Ny

= Important: a finite-length signal is undefined for n < Ny and n. > Ny
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Windowing

oelsiese’s

m Converts a longer signal into a shorter one y[n] = {

zln] N1 <n< Ny
0 otherwise

z[n]
HecosaasssertttITTTT0e,
*l

-1

-15 -10 -5 0 5 10

s

oelsiese’s

Zero Padding

m Converts a shorter signal into a longer one
m Say z[n] is defined for N; <n < N,

0 No<n<N;
m Given Ny < N; < N, < N3 yln]=<z[n] N1<n<N,
0 Ny <n< N3

z(n]

1 IIIIIIIII

’

-1

-15 -10 -5 0 5 10 15
n
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: Periodic Signals
.
3 A discrete-time signal is periodic if it repeats with period N € Z:
=
H
& zln+mN]=z[n] VmeZ
4
5 1 8 X
; JTT To 1L Te oT11[Te 711 T T ]1%
Notes: =15 10 5 0 5 0 15 20
otes: n
= The period N must be an integer
= A periodic signal is infinite in length
]
A discrete-time signal is aperiodic if it is not periodic ‘
8
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: Causal Signals
.
E A signal z[n] is causal if z[n] = 0 for all n < 0.
1
o i
¢ T11111001009
10 -5 [ 5 10 15
n
= A signal z[n] is anti-causal if z[n] = 0 for all n. > 0
1
oy il
R Iidd it
10 -5 0 5 10 15
n
= A signal z[n] is acausal if it is not causal
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¢ Periodization
.
m Converts a finite-length signal into an infinite-length, periodic signal
= Given finite-length z[n], replicate z[n] periodically with period N'
:>c
yn] = > al-mN], nez
m=—o0
= ---+z[n+2N]+z[n+ N]+z[n]+zfn— N+ z[n—2N] +---
z[n]
4
2
J e 1] 1,
0 1 2 3 0 5 6 7
n
.
2
S5 -0 0 5 0 5 10 15 20
n
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¢ Even Signals
.
=
8
) A real signal z[n] is even if z[—n] = z[n]
a
z[n]
1
Aoy
15 10 5 [ 5 10 15
n
= Even signals are symmetrical around the point n = 0
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: Odd Signals

E A real signal z[n] is odd if z[—n] = —z[n] ‘

= Odd signals are anti-symmetrical around the point n. = 0
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i Decomposition Example

o 24t

15 -10 5 10 15
n

Penn ESE 531 Spring 2018 - Khanna 33

¢ Decomposition Example

X[n] X[-n]

( z[n] z[— ) celn]

( I - ~11lnmnnﬁﬁﬁ]mm,,.I) ol
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¢ Signal Decomposition

m Useful fact: Every signal z[n] can be decomposed into the sum of its even part + its odd part
= Even part: e[n] =  (z[n] + z[—n]) (easy to verify that e[n] is even)
= 0dd part:  o[n] = § (z[n] — z[-n]) (easy to verify that o[n] is odd)
= Decomposition  z[n] = e[n] + ofn]
u Verify the decomposition:
eln] +oln] = *(z[n] +al-n]) + ( [n] = z[-n))
= §(z[n] + z[—n] + z[n] — z[-n])

1
= i) =l v

Penn ESE 531 Spring 2018 - Khanna 32

¢ Decomposition Example

o 24t

o T e 5

¢ Decomposition Example

X[n] X[-n] —e[ n]
z( {eprl WW”HHH + UWmﬂmlﬁﬁﬁlll]m" ) =l m ilidilisis
ot
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oelsiese’s

Decomposition Example

Discrete-Time Sinusoids

oelsiese’s

u Discrete-time sinusoids e(“"+%) have two counterintuitive properties

m Both involve the frequency w

m Weird property #1: Aliasing

m Weird property #2: Aperiodicity

Penn ESE 531 Spring 2018 - Khanna 38

seseees

Property #1: Aliasing of Sinusoids

m Consider two sinusoids with two different frequencies

cw = zn] Lol

cwtor = ot 2mnte)

= But note that
Zyfn] = &(@HIDNHS) _ gilwnto)iden _ gilwn+o) gitnn — gilwntd) = g [n)
m The signals z; and z» have different frequencies but are identical!

m We say that z; and z; are aliases; this phenomenon is called aliasing

u Note: Any integer multiple of 27 will do; try with z3[n] = e/(W+27m)n+9) m € Z,
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X[n] X[-n] =e[-n]
a[n) al=n] elnl
R IIHHH + litin = ’{HHHHHHI Iiiiisiieeg
’ ' £
=o[-n]
( ) z[n) oln]
1 — =
el
L X[0]
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¢ Property #1: Aliasing of Sinusoids
m Consider two sinusoids with two different frequencies
cw = mn =W
cwtr > zpfn] = SO
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¢ Aliasing Example

21 [n] = cos (§n)

u zy[n] = cos (1) = cos ((% + 2m)n)

TeTte t111e t111e
B ‘lll* Sl]1¢

15 - 0 5 10 15
n
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eelsieeels

Aliasing Example

u 2;[n] = cos (5n)

”\”\W\”‘\‘\M‘f‘/wuy\‘\‘\‘ﬂu"“‘.H"”/u

N } ‘ m“w I

\”\‘\‘*‘y\‘*w\ il ‘\Hw‘ i M ”“‘H‘*/‘ M
| ‘\ i

‘\\M”‘\\\j‘\‘ \‘,4‘\”\”\‘\‘\\“ A Il
\

_‘H“' "Hw‘""H“\‘H“AH‘HHHH‘\“‘H‘:

\‘,
/

/|

/r‘,vm‘h | |

3o
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¢ Alias-Free Frequencies

z3[n] = el w2mmn+¢) _ pilwn+e) — z1[n] YmeZ

the only frequencies that lead to unique (distinct) sinusoids lie in an interval of length 27

m Two intervals are typically used in the signal processing
literature (and in this course)

e 0<w<2m

o T<w<m
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Which is higher in frequency?

a cos(7 n) or cos(3 7T /2n) ?
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Low and High Frequencies

eiwn+e)

= Low frequencies: w close to 0 or 27 rad
Ex: cos ($5n)

I QTTTTTTTo

3o

= High frequencies: w close to w or —7 rad
Ex: cos (§Zn)
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¢ Increasing Frequency

o [T

Penn ESE 531 Spring 2018 - Khanna 46

¢ Decreasing Frequency
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Property #2: Periodicity of Sinusoids

u Consider z;[n] = e7(“"+%) with frequency w = 2%, k, N € Z (harmonic frequen

m It is easy to show that z, is periodic with period N, since

Zy[n+ N| = f@HN+0) — gilontuN+9) _ gilunte) giwN) — gilwn+e) gi3HEN) — g [p)
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Property #2: Periodicity of Sinusoids

u Consider z;[n] = e(“"+9) with frequency w = 22, k, N € Z (harmonic frequency)

m It is easy to show that z, is periodic with period N, since

Zan+ N] = @@HN0) _ giluntuN+6) _ giwntd) gh) _ giwon+d) (N — g, ()

 Ex: 71[n] = cos(

A SR PN § 2 4 P
J R VR Y R LI 0

5 10 15

5 0
n

= Note: z; is periodic with the (smaller) period of 4 when 4 is an integer
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Aperiodicity of Sinusoids

oelsiese’s

= Consider z,[n] = e7“"+¢) with frequency w # 22X, k, N € Z (not harmonic frequency)

seseees

Aperiodicity of Sinusoids

u Consider z5[n] = ¢/“"+%) with frequency w # 225, k, N € Z (not harmonic frequency)

u Is ; periodic?

Zyfn 4 N| = @ +N)+9) = gilwntwN+9) — giwnt6) gi(@N) 2 ¢ [n]  NO!

Penn ESE 531 Spring 2018 - Khanna

Harmonic Sinusoids

eilwn+9)

m Semi-amazing fact: The only periodic discrete-time sinusoids are those with
harmonic frequencies

2k
W= k,N€eZ

m Which means that

* Most discrete-time sinusoids are not periodic!

o The harmonic sinusoids are somehow magical (they play a starring role later in the DFT)

Penn ESE 531 Spring 2018 - Khanna
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¢ Aperiodicity of Sinusoids
:
u Consider zp[n] = 7“"+%) with frequency w # 22%, k, N € Z (not harmonic frequency)
u Is 2, periodic?
ol + N] = I enN)+6) _ gilam+ul+6) _ gian+d) i@N) 2 z,[n] NO!
® Ex: 2afn] = cos(1.16m)
1
-1,
-15 -10 -5 0 5 10 15
n
= If its frequency w is not harmonic, then a sinusoid oscillates but is not periodic!
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¢ Periodic or not?
:
a cos(5/7 Tt n)
o cos(7 /5n)
o What are N and k? (I.e How many samples is one
period?
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Periodic or not?

a cos(5/7 T n)

= N=14,k=5

= cos(5/14*2 7T n)

= Repeats every N=14 samples
a cos( 7T /5n)

= N=10, k=1

= cos(1/10%2 7 n)

= Repeats every N=10 samples

Penn ESE 531 Spring 2018 - Khanna

Periodic or not?

oelsiese’s

a cos(5/7 Tt n)

= N=14,k=5

= cos(5/14%2 T n)

= Repeats every N=14 samples
a cos( 7 /5n)

= N=10, k=1

= cos(1/10%2 7T n)

= Repeats every N=10 samples

a cos(5/7 T n)+cos(7T /5n) ?
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Periodic or not?

a cos(5/7 7t n)+cos( 7 /5n) ?
= N=SCM{10,14}=70
= cos(5/7* 7T n)+cos( 7T /5n)
= n=N=70->cos(5/ 770 T )+cos(TT /5¥70)=cos(25%2 T )+cos(T¥2 1)

Penn ESE 531 Spring 2018 - Khanna

Discrete-Time Systems

c1n

Discrete Time Systems

A discrete-time system H is a (a rule or formula) that maps a

discrete-time input signal  into a discrete-time output signal y

y="H{z}

DEFINITION

m Systems manipulate the information in signals

= Examples:
o A speech recognition system converts acoustic waves of speech into text
« A radar system transforms the received radar pulse to estimate the position and velocity of targets
« A functional magnetic resonance imaging (fMRI) system transforms measurements of electron spin
into voxel-by-voxel estimates of brain activity
A 30 day moving average smooths out the day-to-day variability in a stock price

Penn ESE 531 Spring 2018 - Khanna

Signal Length and Systems

eelsieeels

R

m Recall that there are two kinds of signals: infinite-length and finite-length

m Accordingly, we will consider two kinds of systems:

Systems that transform an infinite-length-signal = into an infinite-length signal y

Bl Systems that transform a length-N signal  into a length-N signal y

(Such systems can also be used to process periodic signals with period V)

m For generality, we will assume that the input and output signals are complex valued
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System Examples

m |dentity

yln] =z[n] Vn
m Scaling

y[n] =2z[n] Vn
m Offset

yln]=z[n]+2 Vn

m Square signal
? Vn

yln]
= Shift
y[n] =z[n+2] Vn
m Decimate
y[n] =z[2n] Vn
m Square time
ylnl =z[n"] Vo

oelsiese’s

System Examples
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System Properties
0 Memoryless
0 Linearity
o Time Invariance
0 Causality
0 BIBO Stability
Penn ESE 531 Spring 2018 - Khanna 63

Linear Systems

A system H is (zero-state) linear if it satisfies the following two properties:
Scaling
H{az} = aH{z} YaeC

B Additivity
If y1=H{z:} and y, =H{zz} then
Hiz +o}=n+u2

T + 22

DEFINITION

Penn ESE 531 Spring 2018 - Khanna

R g s 0 s
= Shift system (m € Z fixed)
yln)
a Moving average (combines shift, sum, scale)
y[n] = %(I[ﬂ] +zln—1]) Vo
= Recursive average
vn
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: Memoryless
.
:
z y
0 y[n] depends only on x[n]
o Examples:
0 Ideal delay system (or shift system):
= y[n]=x[n-m] memoryless?
0 Square system:
= y[n]=(x[n])> memoryless?
Penn ESE 531 Spring 2018 - Khanna 64
: Proving Linearity
.
:
m A system that is not linear is called nonlinear
= To prove that a system is linear, you must prove rigorously that it has both the scaling and
additivity properties for arbitrary input signals
m To prove that a system is nonlinear, it is sufficient to exhibit a counterexample
Penn ESE 531 Spring 2018 - Khanna 66
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Linearity Example: Moving Average

oelsiese’s

i i) = $(eln] +2fn - 1)

m Scaling: (Strategy to prove — Scale input z by a € C, compute output y via the formula at top,
and verify that it is scaled as well)
® Let

o Let 3 denote the output when ' is input (that is, y’ = H{z'})
® Then

vl = 3@+ - 1))
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Linearity Example: Moving Average

oelsiese’s

] i) = 3eln] + 2l - 1)

m Scaling: (Strategy to prove — Scale input z by o € C, compute output y via the formula at top,
and verify that it is scaled as well)
® Let
aeC

]

o Let y' denote the output when 2’ is input (that is, y' = H{z'})

2[n] = ozl

o Then

Vil = 3@+ -1) =

%(cxz[n]-#az[n—l]) = a(%(z[n}ﬂ[n-l})) = ayln] v
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Linearity Example: Moving Average

z[n] yln) = L(aln] + zln — 1))

m Additivity: (Strategy to prove — Input two signals into the system and verify that the output
equals the sum of the respective outputs)

o Let
2] = @1[n] + za[n]

o Let y'/y1/y2 denote the output when z'/z:/x is input
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Linearity Example: Moving Average

seseees

(] yin) = 3(eln] + 2 — 1))

= Additivity: (Strategy to prove — Input two signals into the system and verify that the output
equals the sum of the respective outputs)

o Let
2'[n] = z1[n] + 22[n]

o Let ' /y1/y2 denote the output when @'/z1 /s s input
® Then

Vil = 2@l +en=1) = (@l + o)} + {zil— 1) + 220~ 1))
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eelsieeels

Linearity Example: Moving Average

yln) = 3(zln] + zln - 1)

= Additivity: (Strategy to prove — Input two signals into the system and verify that the output
equals the sum of the respective outputs)
* Let
2'In] = z1[n] + <2ln)

o Let y'/y1/y> denote the output when z’/z: /x> is input

® Then
Vil = @hl+eh-1) = Fab+zlnl} + - 1)+ ol - 1)
= @bl +aln= 1)+ J(eall +zab - 1) = wibel + i) v
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eelsieeels

Example: Squaring is Nonlinear

st —{ % yiol = Gl

= Additivity: Input two signals into the system and see what happens

o Let
will = @[0)*,  wln] = (w[0)’
o Set
2] = @1n] + w2ln]
o Then

¥l = (@)° = @hl+em)’ = (@) +20nom) + @0)* # yn]+yln)

* Nonlinear!
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Time-Invariant Systems

A system H. ing infinite-length signals is time-invariant (shift-invariant) if
a time shift of the input signal creates a corresponding time shift in the output

signal
aln o
a-d —{ # |~ sin-dl

DEFINITION

m Intuition: A time-invariant system behaves the same no matter when the input is applied

m A system that is not time-invariant is called time-varying
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Example: Decimation

yln] = z[2n]
m This system is time-varying; demonstrate with a counter-example

m Let
z'[n) =z[n—1]

u Let 3’ denote the output when ' is input (that is, ¥’ = H{z'})

m Then

Y[l = &'2n] = z2n—1] # 22(n-1)] = yln-1]

oelsiese’s

Example: Moving Average

= Let

z'[n]=z[n—q], q€Z

m Let ' denote the output when 2’ is input (that is, ' = H{z'})

= Then

g-1) = yh-q v

NI

Vil = @+l -1) =
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Causal Systems

A system # is causal if the output y[n] at time n depends only the input z[m] for
times m < . In words, causal systems do not look into the future

DEFINITION

o Forward difference system:
= y[n]=x[n+1]-x[n] causal?

o Backward difference system:

= y[n]=x[n]-x[n-1] caus:
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Stability
a BIBO Stability
= Bounded-input bounded-output Stability
. An LTI system is bounded-input bounded-output (BIBO) stable if a bounded
g input z always produces a bounded output y
8 bounded = bounded y
u Bounded input and output means /|0 < 00 and [jy[|os < oo,
or that there exist constants A, C < oo such that |z[n]| < A and [y[n]| < C for all n
a[n] vln]
i z
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System Properties - Summary

eelsieeels

o Causality
= y[n] only depends on x[m] for m<=n
o Linearity
= Scaled sum of arbitrary inputs results in output that is a scaled sum of
corresponding outputs
= Ax,[n]+Bx,[n] = Ay, [n]+By,[n]
0 Memoryless
= y[n] depends only on x[n]
0 Time Invariance
= Shifted input results in shifted output
» x[n-q] > y[n-q]
0 BIBO Stability

= A bounded input results in a bounded output (ie. max signal value
exists for output if max )
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Examples

o Causal? Linear? Time-invariant? Memoryless?
BIBO Stable?

0 Time Shift:
= yln]=x[n-m]

0 Accumulator:
ynl= Y, xlk]
fe=—c0
o Compressor (M>1):
yln]=x{Mn]
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Big Ideas

0 Discrete Time Signals
= Unit impulse, unit step, exponential, sinusoids, complex
sinusoids
= Can be finite length, infinite length
= Properties
= Even, odd, causal
= Periodicity and aliasing

= Discrete frequency bounded!

o Discrete Time Systems

y=H{z}

= Transform one signal to another

= Properties

= Linear, Time-invariance, memoryless, causality, BIBO stability
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o Enroll in Piazza site:
= piazza.com/upenn/spring2018/ese531
o HW 1 out after class
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