ESE 531: Digital Signal Processing

Lec 3: January 18, 2018 Discrete Time Signals and Systems

Lecture Outline

- Discrete Time Systems
- LTI Systems
- □ LTI System Properties
- Difference Equations

Discrete-Time Systems

FINITION

A discrete-time system $\mathcal H$ is a transformation (a rule or formula) that maps a discrete-time input signal x into a discrete-time output signal y

$$y = \mathcal{H}\{x\}$$
 $x \longrightarrow \mathcal{H} \longrightarrow y$

- Systems manipulate the information in signals
- Examples:
 - A speech recognition system converts acoustic waves of speech into text
 - A radar system transforms the received radar pulse to estimate the position and velocity of targets
 - A functional magnetic resonance imaging (fMRI) system transforms measurements of electron spin into voxel-by-voxel estimates of brain activity
 - A 30 day moving average smooths out the day-to-day variability in a stock price

System Properties

- Causality
 - y[n] only depends on x[m] for $m \le n$
- Linearity
 - Scaled sum of arbitrary inputs results in output that is a scaled sum of corresponding outputs
 - $Ax_1[n] + Bx_2[n] \rightarrow Ay_1[n] + By_2[n]$
- Memoryless
 - y[n] depends only on x[n]
- □ Time Invariance
 - Shifted input results in shifted output
 - $x[n-q] \rightarrow y[n-q]$
- BIBO Stability
 - A bounded input results in a bounded output (ie. max signal value exists for output if max)

Examples

- □ Causal? Linear? Time-invariant? Memoryless? BIBO Stable?
- □ Time Shift:

•
$$y[n] = x[n-m]$$

□ Accumulator:

$$y[n] = \sum_{k=-\infty}^{n} x[k]$$

□ Compressor (M>1):

$$y[n] = x[Mn]$$

Non-Linear System Example

- Median Filter
 - $y[n]=MED\{x[n-k], ...x[n+k]\}$
 - Let k=1
 - $y[n]=MED\{x[n-1], x[n], x[n+1]\}$

Spectrum of Speech

Speech

Corrupted Speech

Low Pass Filtering

Low Pass Filtering

Corrupted Speech

LP-Filtered Speech

Median Filtering

Corrupted Speech

Med-Filter Speech

LTI Systems

LTI Systems

DEFINITION

A system \mathcal{H} is linear time-invariant (LTI) if it is both linear and time-invariant

- LTI system can be completely characterized by its impulse response $\delta \longrightarrow \boxed{\mathcal{H}} \longrightarrow h$
- Then the output for an arbitrary input is a sum of weighted, delay impulse responses

$$x \longrightarrow h \longrightarrow y \qquad y[n] = \sum_{m=-\infty}^{\infty} h[n-m] x[m]$$

$$y[n] = x[n] * h[n]$$

Convolution

Convolution formula

$$y[n] = x[n] * h[n] = \sum_{m=-\infty}^{\infty} h[n-m] x[m]$$

- To compute the entry y[n] in the output vector y:
 - Time reverse the impulse response vector h and shift it n time steps to the right (delay)
 - 2 Compute the inner product between the shifted impulse response and the input vector x
- Repeat for every n

Convolution Example

$$y[n] = x[n] * h[n] = \sum_{m=-\infty}^{\infty} h[n-m] x[m]$$

Convolve a unit pulse with itself

Convolution is Commutative

- **Fact:** Convolution is commutative: x * h = h * x
- These block diagrams are equivalent: $x \longrightarrow h \longrightarrow y \qquad h \longrightarrow x \longrightarrow y$
- lacktriangle Enables us to pick either h or x to flip and shift (or stack into a matrix) when convolving

LTI Systems in Series

■ Impulse response of the **cascade** (aka series connection) of two LTI systems:

LTI Systems in Series

■ Impulse response of the **cascade** (aka series connection) of two LTI systems:

■ Easy proof by picture; find impulse response the old school way

LTI Systems in Parallel

■ Impulse response of the **parallel connection** of two LTI systems

■ Proof is an easy application of the linearity of an LTI system

Example

■ Compute the overall effective impulse response of the following system

A system \mathcal{H} is **causal** if the output y[n] at time n depends only the input x[m] for times $m \leq n$. In words, causal systems do not look into the future

■ Fact: An LTI system is causal if its impulse response is causal: h[n] = 0 for n < 0

■ To prove, note that the convolution

$$y[n] = \sum_{m=-\infty}^{\infty} h[n-m] x[m]$$

does not look into the future if h[n-m]=0 when m>n; equivalently, $h[n^\prime]=0$ when $n^\prime<0$

An LTI system has a **finite impulse response** (FIR) if the duration of its impulse response h is finite

■ Example: Moving average system $y[n] = \mathcal{H}\{x[n]\} = \frac{1}{2}(x[n] + x[n-1])$

An LTI system has an **infinite impulse response** (IIR) if the duration of its impulse response h is infinite

■ Example: Recursive average system $y[n] = \mathcal{H}\{x[n]\} = x[n] + \alpha y[n-1]$

■ Note: Obviously the FIR/IIR distinction applies only to infinite-length signals

BIBO Stability Revisited

OLLINIS

An LTI system is **bounded-input bounded-output (BIBO) stable** if a bounded input x always produces a bounded output y

bounded $x \longrightarrow h \longrightarrow \text{bounded } y$

■ Bounded input and output means $\|x\|_{\infty} < \infty$ and $\|y\|_{\infty} < \infty$, or that there exist constants $A, C < \infty$ such that |x[n]| < A and |y[n]| < C for all n

An LTI system is **bounded-input bounded-output (BIBO) stable** if a bounded input x always produces a bounded output y

bounded $x \longrightarrow h \longrightarrow \text{bounded } y$

 \blacksquare Bounded input and output means $\|x\|_{\infty}<\infty$ and $\|y\|_{\infty}<\infty$

■ Fact: An LTI system with impulse response h is BIBO stable if and only if

$$\|h\|_1 \ = \ \sum_{n=-\infty}^{\infty} |h[n]| \ < \ \infty$$

■ Prove that $\underline{\text{if } \|h\|_1 < \infty}$ then the system is BIBO stable – for any input $\|x\|_\infty < \infty$ the output $\|y\|_\infty < \infty$

- Prove that $\underline{\text{if } \|h\|_1 < \infty}$ then the system is BIBO stable for any input $\|x\|_\infty < \infty$ the output $\|y\|_\infty < \infty$
- Recall that $\|x\|_{\infty} < \infty$ means there exist a constant A such that $|x[n]| < A < \infty$ for all n
- Let $||h||_1 = \sum_{n=-\infty}^{\infty} |h[n]| = B < \infty$

- Prove that $\underline{\text{if } \|h\|_1 < \infty}$ then the system is BIBO stable for any input $\|x\|_\infty < \infty$ the output $\|y\|_\infty < \infty$
- Recall that $\|x\|_{\infty} < \infty$ means there exist a constant A such that $|x[n]| < A < \infty$ for all n
- Let $||h||_1 = \sum_{n=-\infty}^{\infty} |h[n]| = B < \infty$
- lacksquare Compute a bound on |y[n]| using the convolution of x and h and the bounds A and B

$$|y[n]| = \left| \sum_{m=-\infty}^{\infty} h[n-m] x[m] \right|$$

- Prove that $\underline{\text{if } \|h\|_1 < \infty}$ then the system is BIBO stable for any input $\|x\|_\infty < \infty$ the output $\|y\|_\infty < \infty$
- Recall that $\|x\|_{\infty} < \infty$ means there exist a constant A such that $|x[n]| < A < \infty$ for all n
- Let $||h||_1 = \sum_{n=-\infty}^{\infty} |h[n]| = B < \infty$
- lacksquare Compute a bound on |y[n]| using the convolution of x and h and the bounds A and B

$$|y[n]| = \left| \sum_{m=-\infty}^{\infty} h[n-m] \, x[m] \right| \leq \sum_{m=-\infty}^{\infty} |h[n-m]| \, |x[m]|$$

- Prove that $\underline{\text{if } \|h\|_1 < \infty}$ then the system is BIBO stable for any input $\|x\|_\infty < \infty$ the output $\|y\|_\infty < \infty$
- Recall that $\|x\|_{\infty} < \infty$ means there exist a constant A such that $|x[n]| < A < \infty$ for all n
- Let $||h||_1 = \sum_{n=-\infty}^{\infty} |h[n]| = B < \infty$
- lacksquare Compute a bound on |y[n]| using the convolution of x and h and the bounds A and B

$$\begin{array}{lcl} |y[n]| & = & \left|\sum_{m=-\infty}^{\infty} h[n-m] \, x[m]\right| & \leq & \sum_{m=-\infty}^{\infty} |h[n-m]| \, |x[m]| \\ \\ & < & \sum_{m=-\infty}^{\infty} |h[n-m]| \, A \, = \, A \sum_{k=-\infty}^{\infty} |h[k]| \, = \, A \, B \, = \, C \, < \, \infty \end{array}$$

■ Since $|y[n]| < C < \infty$ for all n, $||y||_{\infty} < \infty$ ✓

- Prove that $\underline{\text{if } \|h\|_1 = \infty}$ then the system is $\underline{\text{not}}$ BIBO stable there exists an input $\|x\|_\infty < \infty$ such that the output $\|y\|_\infty = \infty$
 - Assume that x and h are real-valued; the proof for complex-valued signals is nearly identical

- Prove that $\underline{\text{if }} \|h\|_1 = \infty$ then the system is $\underline{\text{not}}$ BIBO stable there exists an input $\|x\|_{\infty} < \infty$ such that the output $\|y\|_{\infty} = \infty$
 - Assume that x and h are real-valued; the proof for complex-valued signals is nearly identical
- Given an impulse response h with $||h||_1 = \infty$ (assume complex-valued), form the tricky special signal $x[n] = \operatorname{sgn}(h[-n])$
 - x[n] is the \pm sign of the time-reversed impulse response h[-n]
 - Note that x is bounded: $|x[n]| \le 1$ for all n

- We are proving that that $\underline{\mathrm{if}\ \|h\|_1=\infty}$ then the system is $\underline{\mathrm{not}}$ BIBO stable there exists an input $\|x\|_\infty<\infty$ such that the output $\|y\|_\infty=\infty$
- Armed with the tricky special signal x, compute the output y[n] at the time point n=0

$$y[0] = \sum_{m=-\infty}^{\infty} h[0-m] x[m]$$

- We are proving that that $\underline{\text{if } \|h\|_1 = \infty}$ then the system is $\underline{\text{not}}$ BIBO stable there exists an input $\|x\|_{\infty} < \infty$ such that the output $\|y\|_{\infty} = \infty$
- Armed with the tricky special signal x, compute the output y[n] at the time point n=0

$$y[0] = \sum_{m=-\infty}^{\infty} h[0-m] x[m] = \sum_{m=-\infty}^{\infty} h[-m] \operatorname{sgn}(h[-m])$$
$$= \sum_{m=-\infty}^{\infty} |h[-m]| = \sum_{k=-\infty}^{\infty} |h[k]| = \infty$$

- lacktriangle We are proving that that $\underline{\mathrm{if}} \ \|h\|_1 = \infty$ then the system is not BIBO stable there exists an input $\|x\|_{\infty} < \infty$ such that the output $\|y\|_{\infty} = \infty$
- Armed with the tricky special signal x, compute the output y[n] at the time point n=0

$$y[0] = \sum_{m=-\infty}^{\infty} h[0-m] x[m] = \sum_{m=-\infty}^{\infty} h[-m] \operatorname{sgn}(h[-m])$$
$$= \sum_{m=-\infty}^{\infty} |h[-m]| = \sum_{k=-\infty}^{\infty} |h[k]| = \infty$$

So, even though x was bounded, y is not bounded; so system is not BIBO stable

Examples

■ Example: $h[n] = \begin{cases} \frac{1}{n} & n \geq 1 \\ 0 & \text{otherwise} \end{cases}$ $\|h\|_1 = \sum_{n=1}^{\infty} \left|\frac{1}{n}\right| = \infty \Rightarrow \text{not BIBO}$

$$||h||_1 = \sum_{n=1}^{\infty} \left| \frac{1}{n^2} \right| = \frac{\pi^2}{6} \implies \mathsf{BIBO}$$

■ Example: h FIR \Rightarrow BIBO

Example

- lacktriangle Example: Recall the recursive average system $y[n] = \mathcal{H}\{x[n]\} = x[n] + lpha\,y[n-1]$
- Impulse response: $h[n] = \alpha^n u[n]$

Example

$$lacktriangle$$
 Example: Recall the recursive average system $y[n] = \mathcal{H}\{x[n]\} = x[n] + \alpha y[n-1]$

$$y[n] = \mathcal{H}\{x[n]\} = x[n] + \alpha y[n-1]$$

- Impulse response: $h[n] = \alpha^n u[n]$
- For $|\alpha| < 1$

$$\|h\|_1 = \sum_{n=0}^{\infty} |\alpha|^n = \frac{1}{1-|\alpha|} < \infty \ \Rightarrow \ \mathsf{BIBO}$$

■ For $|\alpha| > 1$

$$\|h\|_1 = \sum_{n=0}^{\infty} |\alpha|^n = \infty \Rightarrow \text{ not BIBO}$$

Difference Equations

Accumulator example

$$y[n] = \sum_{k=-\infty}^{n} x[k]$$

$$y[n] = x[n] + \sum_{k=-\infty}^{n-1} x[k]$$

$$y[n] = x[n] + y[n-1]$$

$$y[n] - y[n-1] = x[n]$$

Difference Equations

Accumulator example

$$y[n] = \sum_{k=-\infty}^{n} x[k]$$

$$y[n] = x[n] + \sum_{k=-\infty}^{n-1} x[k]$$

$$y[n] = x[n] + y[n-1]$$

$$y[n] - y[n-1] = x[n]$$

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{m=0}^{M} b_m x[n-m]$$

Difference Equations

Accumulator example

$$y[n] = \sum_{k=-\infty}^{n} x[k]$$

$$y[n] = x[n] + \sum_{k=-\infty}^{n-1} x[k]$$

$$y[n] = x[n] + y[n-1]$$

$$y[n] - y[n-1] = x[n]$$

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{m=0}^{M} b_m x[n-m]$$

Example: Difference Equation

Moving Average System

$$y[n] = \frac{1}{M_1 + M_2 + 1} \sum_{k=-M_1}^{M_2} x[n-k]$$

■ Let M_1 =0 (i.e. system is causal)

$$y[n] = \frac{1}{M_2 + 1} \sum_{k=0}^{M_2} x[n - k]$$

Big Ideas

- □ LTI Systems are a special class of systems with significant signal processing applications
 - Can be characterized by the impulse response
- □ LTI System Properties
 - Causality and stability can be determined from impulse response
- Difference equations suggest implementation of systems
 - Give insight into complexity of system

Admin

- □ HW 1 out now
 - Due 1/26 at midnight
 - Submit in Canvas