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ILecture Outline

0 Discrete Time Systems
a LTI Systems
a LTI System Properties

0 Ditference Equations
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Discrete-Time Systems
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Discrete Time Systems

A discrete-time system H is a transformation (a rule or formula) that maps a
discrete-time input signal z into a discrete-time output signal y

y = H{z}

=
Q
E
=
e
wi
Q

T —_— g — y

m Systems manipulate the information in signals

m Examples:

A speech recognition system converts acoustic waves of speech into text

A radar system transforms the received radar pulse to estimate the position and velocity of targets
A functional magnetic resonance imaging (fMRI) system transforms measurements of electron spin
into voxel-by-voxel estimates of brain activity

A 30 day moving average smooths out the day-to-day variability in a stock price
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System Properties

0 Causality
= y[n] only depends on x[m] for m<=n
0 Linearity

= Scaled sum of arbitrary inputs results in output that 1s a scaled sum of
corresponding outputs

= Axy[n]+Bxy[n] 2 Ay,[n]+By,[n]
0 Memoryless
= y|[n]| depends only on x|n]
0 Time Invariance
= Shifted input results in shifted output
= x[n-q] = y[n-q]
o BIBO Stability

= A bounded input results in a bounded output (te. max signal value
exists for output 1f max )
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. Examples

0 Causal? Linear? Time-invariant? Memoryless?

BIBO Stable?
0 Time Shift:

= y[nl=x[n-m]

0 Accumulator:
vnl= ) x[k]
k=—0
0 Compressor (M>1):
yln]=x[Mn]
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Non-Linear System Example

0 Median Filter
= y[n]=MED{x|[n-k], ...x[n+k]}

m Letk=1
= y[n]=MED {x[n-1], x[n], x[n+1]}
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Spectrum of Speech
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Low Pass Filtering
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Low Pass Filtering

Corrupted :
Speech J/

N

-

N N

e

1 | 1
4.0966 4.0968 4.097 4.0972 4.0974 4.09

| | |
76 4.0978 4.098 4.0982 4.0984 4.0986

LP-Filtered |
Speech °f

-05 F
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Median Filtering

———
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Corrupted "/
Speech | / ]

| 1 1 | | 1
4.0966 4.0968 4.097 4.0972 4.0974 4.0976 4.0978 4.098 4.0982 4.0984 4.0986

Lt

d-filter

Med-Filter =~ ‘
Speech o/\/\W-

-05 F -

_1 1 1 1 1 1 1 1 1 1 1
4.0966 4.0968 4.097 4.0972 4.0974 4.0976 4.0978 4.098 4.0982 4.0984 4.0986
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-

T Systems

A system # is linear time-invariant (LTI) if it is both linear and time-invariant

DEFINITION

a LTI system can be completely characterized by its impulse
response

d— H —h

a0 Then the output for an arbitrary input is a sum of weighted,
delay impulse responses

r—| B F—oU yln| = Z hln — m] z[m]

mnm=—0o

yln]=x[n]=h[n]
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Convolution

Tr — h — Y

m Convolution formula

y[n] = z[n] * h[n] = Z h{n — m]| z[m]

m=—0oo

m To compute the entry y[n] in the output vector y:

Time reverse the impulse response vector h and
shift it n time steps to the right (delay)

FA Compute the inner product between the shifted
impulse response and the input vector =

m Repeat for every n
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Convolution Example

yln] = z[n]*hln] = ) hin—m]zm]

m=—0oc

m Convolve a unit pulse with itself
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Convolution 1s Commutative

m Fact: Convolution is commutative: z*xh = hx*zx

m These block diagrams are equivalent: T— h H—VUY h—) « —VY

m Enables us to pick either h or z to flip and shift (or stack into a matrix) when convolving
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L'TT Systems 1n Sertes

m Impulse response of the cascade (aka series connection) of two LTI systems:
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L'TT Systems 1n Sertes

m Impulse response of the cascade (aka series connection) of two LTI systems:

I — h]_

ha

_)y

I — hl*h’2

m Easy proof by picture; find impulse response the old school way

§— h

o hy —
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L'TT Systems 1n Parallel

m Impulse response of the parallel connection of two LTI systems

h1

—.

ha

s

m Proof is an easy application of the linearity of an LTI system
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Example

m Compute the overall effective impulse response of the following system

h3

S
®

4 ho
— hy 4—

e —

" hs

he
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Causal System Revisited

A system H is causal if the output y[n] at time n depends only the input z[m| for
times m < n. In words, causal systems do not look into the future

=z
o
=
=
T
w
a

m Fact: An LTI system is causal if its impulse response is causal: h[n] =0 forn <0

hin] = a™u[n], a«=0.8

QSJ,,,,,.,[ITTITZ?;

-8 -6 -4 =2 0 2
n
m To prove, note that the convolution
o0
yln] = Y hln—m|z[m]
m=—0oc

does not look into the future if h[n —m] = 0 when m > n; equivalently, A[n'] = 0 when n’ < 0
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Duration of Impulse

An LTI system has a finite impulse response (FIR) if the duration of its impulse
response h is finite

DEFINITION

m Example: Moving average system  y[n| = H{z[n]} = 3 (z[n]+z[n —1])

h(n] = %(6[71,] + é[n — 1])
® o
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Duration of Impulse

=

=8  An LTl system has an infinite impulse response (IIR) if the duration of its impulse
E response h is infinite

m Example: Recursive average system  y[n] = H{z[n|} = z[n|+ayn—1]

h[n] = a™u[n], a=0.8

m Note: Obviously the FIR/IIR distinction applies only to infinite-length signals
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BIBO Stability Revisited

An LTI system is bounded-input bounded-output (BIBO) stable if a bounded
input  always produces a bounded output y

DEFINITION

bounded z — h [— bounded y

m Bounded input and output means ||z| o < 00 and [|y|e < o0,
or that there exist constants A,C < oo such that |z[n|| < A and |y[n]| < C for all n

3

24
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n n
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BIBO Stability Revisited

An LTI system is bounded-input bounded-output (BIBO) stable if a bounded
input z always produces a bounded output y

=
Q
E
=
r
w
(o]

boundedz — h |— bounded y

m Bounded input and output means ||z, < 0o and ||yle < 00

y[n]

_ z[n]
mMQQYfTTTTTTTTTTTT?:‘llll ) h 7 io.»f—,—l.Q

1 >
15 10 5 0 5 10 15 15 10
n

?TTTTTT;TT
tedlllet 4|

m Fact: An LTI system with impulse response 4 is BIBO stable if and only if

IRl = ) [AA)l < oo

n=—oo
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BIBO Stability — Sutficient Condition

m Prove that if ||hl|; < oo then the system is BIBO stable — for any input ||z||. < oo the output
|ylloo <00
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BIBO Stability — Sutficient Condition

m Prove that if ||hl|; < oo then the system is BIBO stable — for any input ||z||. < oo the output
|ylloo <00

m Recall that ||z||. < oo means there exist a constant A such that |z[n]| < A < oo for all n

m Let ||hli =322 |h[n]|=B <o

n=—oo
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BIBO Stability — Sutficient Condition

m Prove that if ||hl|; < oo then the system is BIBO stable — for any input ||z||. < oo the output
|yllee < 00

m Recall that ||z||. < co means there exist a constant A such that |z[n]| < A < oo for all n

mLet |hli =322 |h[n]|=B <o

n=—oo

m Compute a bound on |y[n]| using the convolution of z and h and the bounds A and B

ylnll =

Z h[n — m] :v[m]'

m=—0oc
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BIBO Stability — Sutficient Condition

m Prove that if ||hl|; < oo then the system is BIBO stable — for any input ||z||. < oo the output
|yllee < 00

m Recall that ||z||. < co means there exist a constant A such that |z[n]| < A < oo for all n

mLet |hli =322 |h[n]|=B <o

n=—oo

m Compute a bound on |y[n]| using the convolution of z and h and the bounds A and B

oo

< Y. |hln—m]||zm]

m=—0oo

Z hln — m]z[m]

m=—0oc

ylnll =
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BIBO Stability — Sutficient Condition

m Prove that if ||hl|; < oo then the system is BIBO stable — for any input ||z||. < oo the output
|yllee < 00

m Recall that ||z||. < co means there exist a constant A such that |z[n]| < A < oo for all n

mLet |hli =322 |h[n]|=B <o

n=—oo

m Compute a bound on |y[n]| using the convolution of z and h and the bounds A and B

lylnll = | > hln-mlem]| < Y |k[n—m]||zm]
< i |lh[n—m]|A = A i |h[k]] = AB = C < o©
m=—oo k=—oc

m Since |y[n]| < C < oo for all n, ||y|lec <00 v
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BIBO Stability — Necessary Condition

m Prove that if ||h||; = oo then the system is not BIBO stable — there exists an input ||z||« < 0o
such that the output ||y|/ec = 00
e Assume that z and h are real-valued; the proof for complex-valued signals is nearly identical
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BIBO Stability — Necessary Condition

m Prove that if ||h||; = oo then the system is not BIBO stable — there exists an input ||z||« < oo

such that the output ||y|/ec = 00

e Assume that = and h are real-valued; the proof for complex-valued signals is nearly identical

m Given an impulse response h with ||h||; = oo (assume complex-valued), form the tricky special

signal z[n] = sgn(h[—n])

e z[n] is the £ sign of the time-reversed impulse response h[—n]

e Note that z is bounded: |z[n]| <1 for all n

h[n|

00, 1?

;’“..H“.*Y.ll‘TT*ll‘

-15 -10 -5
n
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BIBO Stability — Necessary Condition

m We are proving that that if ||h||; = co then the system is not BIBO stable — there exists an input
|z||se < oo such that the output ||yl = o0

m Armed with the tricky special signal z, compute the output y[n] at the time point n = 0

o) = 3 hlo—m]afm]

m=—0oo
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BIBO Stability — Necessary Condition

m We are proving that that if ||h||; = oo then the system is not BIBO stable — there exists an input
|z||se < oo such that the output ||yl = o0

m Armed with the tricky special signal z, compute the output y[n] at the time point n = 0

Z h0—mlzfm] = > h[—m]sgn(h[—m])

y[0] =
= ) |p[-m]| = Z k]| =
m=—oo k=—00
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BIBO Stability — Necessary Condition

m We are proving that that if ||h||; = co then the system is not BIBO stable — there exists an input
|z||se < oo such that the output ||yl = o0

m Armed with the tricky special signal z, compute the output y[n] at the time point n = 0

yl0] = Y h0-mlzim] = > hl—m] sgn(h[-m])
= ) |h[-m]| = Z |h[k]| =
m=—oo k=—00

m So, even though = was bounded, y is not bounded; so system is not BIBO stable

hn] h[—n]

0

II
-

-5
-15 -10 -5 0 5 10 15
n n

(UM M M
B 1 1V -V W

15 -10 - 0
n

(5]
-
o
5]
o
3]
-
o
o
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Examples

L op>1
= Example: h[n] = {(TJL otherwise

|hli =302, || =00 = not BIBO

n

% n>1

m Example: h[n]| = {6 otherwise

2

Il =352, || =% = BIBO

n2

m Example: » FIR = BIBO

Penn ESE 531 Spring 2018 - Khanna

h(n]

O'L[TT?7?’QQMM

-5 0 5 10 15 20 25
Tt

h(n] (FIR)

i R oy

2 L
-5 0 5 10 15 20 25
i

36



Example

m Example: Recall the recursive average system

m Impulse response: hl[n] = a™un]
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yln] = H{z[n]}

z[n] + ayln — 1]
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Example

m Example: Recall the recursive average system
m Impulse response: hl[n] = a™un]

m For o] <1

Ihlly = 352 le]™ = =25 < oo = BIBO

m For |a| > 1

|hlly = 3% |a|® = 00 = not BIBO
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yln] = H{z[n]}

z[n] + ayln — 1]
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Ditterence |

H.quations

0 Accumulator example

yln]=

n

Y x[k]

k=—00

vl =xin]+ 3 A[k]

k=—OO

yln]=x{n]+yln-1]
yln]=yln-1]=x[n]
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Ditterence |

H.quations

0 Accumulator example

yln]=

n

Y x[k]

k=—00

vl =xin]+ 3 A[k]

k=—OO

yln]=x{n]+yln-1]

yln]=yln-1]=x[n]

Eaky[n -k]= E b x[n-m]

k=0 m=0
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. Ditterence Equations

0 Accumulator example

n

ylnl= > x[k] ; »
kzoo i 1 y|n]
n-1
y[n] = x[n] + E x[k] Ollk(,’-c.\ldal;lplc
f=—o0
vin-1]

yln]=x{n]+yln-1]

yln]=yln-1]=x[n]

N

2

k=0

a yln-k]= E b x[n-m]
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Example: Difference

Equation

0 Moving Average System

M,

yM_M+M

+1Ex

k=

a0 Let M,=0 (1.e. system 1s causal)

yln]= :

M+1
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Big Ideas

a LTI Systems are a special class of systems with
significant signal processing applications

= Can be characterized by the impulse response
a0 LTI System Properties

= Causality and stability can be determined from impulse
response

0 Ditference equations suggest implementation of
systems

= Give insight into complexity of system
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Admin

o HW 1 out now
= Due 1/26 at midnight

s Submit in Canvas
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