University of Pennsylvania Department of Electrical and System Engineering Digital Signal Processing

ESE531, Spring 2018	Midterm	Tuesday, March 13

- 3 Problems with point weightings shown. All 3 problems must be completed.
- Calculators allowed.
- Closed book = No text allowed. One two-sided 8.5×11 cheat sheet allowed.

Name:

Grade:

Q1	
Q2	
Q3	
Total	

TABLE 2.3 FOURIER TRANSFORM PAIRS

Sequence	Fourier Transform	TABLE 2.2 FOURIER TRANSFORM THEORE	MS
1. δ[n]	1	Sequence	Fourier Transform
2. $\delta[n - n_0]$	$e^{-j\omega n_0}$	<i>x</i> [<i>n</i>]	$X(e^{j\omega})$
3. 1 $(-\infty < n < \infty)$	$\sum_{k=1}^{\infty} 2\pi \delta(\omega + 2\pi k)$	y[n]	$Y(e^{j\omega})$
	$k=-\infty$	1. $ax[n] + by[n]$	$aX(e^{j\omega}) + bY(e^{j\omega})$
4. $a^n u[n]$ (<i>a</i> < 1)	$\frac{1}{1 - ae^{-j\omega}}$	2. $x[n-n_d]$ (n_d an integer)	$e^{-j\omega n_d}X(e^{j\omega})$
<i></i>	1 $\sum_{i=1}^{\infty} -2(i+2-i)$	3. $e^{j\omega_0 n} x[n]$	$X(e^{j(\omega-\omega_0)})$
5. $u[n]$ 6. $(n+1)a^n u[n]$ $(a < 1)$	$\frac{1}{1-e^{-j\omega}} + \sum_{k=-\infty}^{\infty} \pi \delta(\omega + 2\pi k)$ $\frac{1}{(1-ae^{-j\omega})^2}$	4. $x[-n]$	$X(e^{-j\omega})$ $X^*(e^{j\omega})$ if $x[n]$ real.
7. $\frac{r^{n} \sin \omega_{p}(n+1)}{\sin \omega_{p}} u[n] (r < 1)$	$\frac{(1 - ae^{-j\omega})^2}{1 - 2r\cos\omega_n e^{-j\omega} + r^2 e^{-j2\omega}}$	5. nx[n]	$jrac{dX\left(e^{j\omega} ight)}{d\omega}$
	r	6. $x[n] * y[n]$	$X(e^{j\omega})Y(e^{j\omega})$
8. $\frac{\sin \omega_c n}{\pi n}$	$X\left(e^{j\omega} ight) = egin{cases} 1, & \omega < \omega_{\mathcal{C}}, \ 0, & \omega_{\mathcal{C}} < \omega \leq \pi \end{cases}$	7. $x[n]y[n]$	$\frac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{j\theta})Y(e^{j(\omega-\theta)})d\theta$
9. $x[n] = \begin{cases} 1, & 0 \le n \le M \\ 0, & \text{otherwise} \end{cases}$	$\frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}e^{-j\omega M/2}$	Parseval's theorem:	$2\pi J = \pi$
0. $e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi\delta(\omega-\omega_0+2\pi k)$	$8.\sum_{n=-\infty}^{\infty} x[n] ^2=\frac{1}{2\pi}\int_{-\pi}^{\pi} X(e^{j\omega}) ^2d\omega$	
1. $\cos(\omega_0 n + \phi)$	$\sum_{k=-\infty}^{\infty} [\pi e^{j\phi} \delta(\omega - \omega_0 + 2\pi k) + \pi e^{-j\phi} \delta(\omega + \omega_0 + 2\pi k)]$	9. $\sum_{n=-\infty}^{\infty} x[n]y^*[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})Y^*(e^{j\omega})d\omega$	
ABLE 3.1 SOME COMMON z-TRANSFORM	I PAIRS		
Sequence T	ransform ROC		
1. δ[n] 1	All z		
2. $u[n]$ $\frac{1}{1-z^{-1}}$	z > 1	TABLE 3.2 SOME z-TRANSFORM PROPERTIES	
3. $-u[-n-1]$ $\frac{1}{1-1}$	z < 1	Property Section	

	$1 - z^{-1}$						
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1	Property Number	Section Reference	Sequence	Transform	ROC
4. $\delta[n-m]$	z^{-m}	All z except 0 (if $m > 0$) or ∞ (if $m < 0$)			<i>x</i> [<i>n</i>]	X(z)	R _x
5. $a^{n}u[n]$	$\frac{1}{1-az^{-1}}$	z > a			$x_1[n]$	$X_1(z)$	R_{x_1}
6. $-a^n u[-n-1]$	$\frac{1}{1}$	z < a			$x_2[n]$	$X_2(z)$	R_{x_2}
	$1 - az^{-1} \\ az^{-1}$		1	3.4.1	$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$	Contains $R_{x_1} \cap R_{x_2}$
7. $na^{n}u[n]$	$\frac{az}{(1-az^{-1})^2}$	z > a	2	3.4.2	$x[n-n_0]$	$z^{-n_0}X(z)$	R_x , except for the possible
8. $-na^{n}u[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a					addition or deletion of the origin or ∞
9. $\cos(\omega_0 n)u[n]$	$1-\cos(\omega_0)z^{-1}$	z > 1	3	3.4.3	$z_0^n x[n]$	$X(z/z_0)$	$ z_0 R_x$
$9. \cos(\omega_0 n) u[n]$	$1 - 2\cos(\omega_0)z^{-1} + z^{-2}$	2 > 1	4	3.4.4	nx[n]	$\frac{-z\frac{dX(z)}{dz}}{X^*(z^*)}$	R_x
10. $\sin(\omega_0 n)u[n]$	$\frac{\sin(\omega_0)z^{-1}}{1-2\cos(\omega_0)z^{-1}+z^{-2}}$	z > 1	5	3.4.5	$x^*[n]$	$X^*(z^*)^d$	R_x
11. $r^n \cos(\omega_0 n) u[n]$	$\frac{1 - r\cos(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$	z > r	6		$\mathcal{R}e\{x[n]\}$	$\frac{1}{2}[X(z)+X^*(z^*)]$	Contains R_x
12. $r^n \sin(\omega_0 n) u[n]$	$\frac{r\sin(\omega_0)z^{-1}}{1-2r\cos(\omega_0)z^{-1}+r^2z^{-2}}$	z > r	7		$\mathcal{I}m\{x[n]\}$	$\frac{1}{2i}[X(z) - X^*(z^*)]$	Contains R_x
13. $\begin{cases} a^n, & 0 \le n \le N-1, \\ a^n, & 0 \le n \le N-1, \end{cases}$	$1 - a^N z^{-N}$		8	3.4.6	$x^{*}[-n]$	$\bar{X}^{*}(1/z^{*})$	$1/R_x$
15. $\{0, \text{ otherwise}\}$	$1 - az^{-1}$	z > 0	9	3.4.7	$x_1[n] \ast x_2[n]$	$X_1(z)X_2(z)$	Contains $R_{x_1} \cap R_{x_2}$

Trigonometric Identity:

$$e^{j\Theta} = \cos(\Theta) + j\sin(\Theta)$$

Geometric Series:

$$\sum_{n=0}^{N} r^{n} = \frac{1-r^{N+1}}{1-r}$$
$$\sum_{n=0}^{\infty} r^{n} = \frac{1}{1-r}, |r| < 1$$

DTFT Equations:

$$X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} x[k]e^{-j\omega k}$$
$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})e^{j\omega n} d\omega$$

ESE531

Z-Transform Equations:

$$X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$
$$x[n] = \frac{1}{2\pi j} \oint_{C} X(z) z^{n-1} dz$$

Upsampling/Downsampling:

Upsampling by L (\uparrow L): $X_{up} = X(e^{j\omega L})$ Downsampling by M (\downarrow M): $X_{down} = \frac{1}{M} \sum_{i=0}^{M-1} X(e^{j(\frac{\omega}{M} - \frac{2\pi}{M}i)})$

Interchange Identities:

$$\begin{array}{rcl} x[n] & & & & & \\ & & & \\ & & & \\$$

1. (20pts) Sampling.

(a) Consider the continuous-time signal $x_a(t)$ given below. A discrete-time signal is created by sampling $x_a(t)$ according to $x_a[n] = x_a(nT_s)$ with $F_s = \frac{1}{T_s} = 4W$. Plot the magnitude of the DTFT of $x_a[n]$, $|X_a(e^{j\omega})|$, over $-\pi < \omega < \pi$. Show all work.

$$x_a(t) = \cos(2\pi W t) \tag{1}$$

(b) Consider the continuous-time signal $x_b(t)$ given below. A discrete-time signal is created by sampling $x_b(t)$ according to $x_b[n] = x_b(nT_s)$ with $F_s = \frac{1}{T_s} = 3W$. Plot the magnitude of the DTFT of $x_b[n]$, $|X_b(e^{j\omega})|$, over $-\pi < \omega < \pi$. Show all work.

$$x_b(t) = T_s \frac{1}{2} \left(\frac{\sin(2\pi Wt)}{\pi t} + \frac{\sin(2\pi \frac{W}{2}t)}{\pi t} \right)$$
(2)

ESE531

2. (50pts) Discrete-time Systems. Consider a discrete-time system characterized by the difference equation below where $j = e^{j\frac{\pi}{2}}$.

$$y[n] = j \cdot y[n-1] + x[n] - x[n-4]$$
(3)

(a) Is this an LTI system?

(b) Find the transfer function, $H(z) = \frac{Y(z)}{X(z)}$, of the system.

(c) Find the impulse response, h[n]. HINT: This is a FIR system.

(d) Draw the pole zero diagram for this system.

(e) For this same system, write an equivalent difference equation that only depends on the current input and a finite number of past inputs. (f) Plot a rough sketch of the magnitude of the frequency response, $|H(e^{j\omega})|$, over $-\pi < \omega < \pi$.

(g) Determine the overall output y[n] of the system when the input is the sum of infinite-length sine waves, $x[n] = 3 + 2^{j\frac{\pi}{2}n} + \sqrt{2}e^{-j\frac{\pi}{2}n} + e^{j\pi}$.

ESE531

3. (30 pts) Resampling and Filtering. Determine the impulse response $h_{eq}[n]$ in Figure 1(b) so that the I/O relationship of the system in Figure 1(b) is exactly the same as the I/O relationship of the system in Figure 1(a). You should work in the frequency domain and show all work. Plot the magnitude of the DTFT of $h_{eq}[n]$, $|H_{eq}(e^{j\omega})|$, over $-\pi < \omega < \pi$.

[This page left intentionally blank. Use for extra space for work.]