University of Pennsylvania Department of Electrical and System Engineering Digital Signal Processing

ESE531, Spring 2018	Midterm	Tuesday, March 13

- 3 Problems with point weightings shown. All 3 problems must be completed.
- Calculators allowed.
- Closed book = No text allowed. One two-sided 8.5×11 cheat sheet allowed.

Name: Answers

Grade:

Q1	
Q2	
Q3	
Total	

Mean: 68.2, Stdev:16.6

TABLE 2.3 FOURIER TRANSFORM PAIRS

Sequence	Fourier Transform	TABLE 2.2 FOURIER TRANSFORM THEOREMS			
1. δ[n]	1	Sequence	Fourier Transform		
2. $\delta[n - n_0]$	$e^{-j\omega n_0}$	x[n]	$X\left(e^{j\omega} ight)$		
3. 1 $(-\infty < n < \infty)$	$\sum_{k=1}^{\infty} 2\pi \delta(\omega + 2\pi k)$	<i>y</i> [<i>n</i>]	$Y(e^{j\omega})$		
	<i>k</i> =−∞	1. $ax[n] + by[n]$	$aX(e^{j\omega}) + bY(e^{j\omega})$		
4. $a^n u[n]$ (<i>a</i> < 1)	$\frac{1}{1-ae^{-j\omega}}$	2. $x[n-n_d]$ (n_d an integer)	$e^{-j\omega n_d} X(e^{j\omega})$		
5[1]	1 $\sum_{k=1}^{\infty} \pi^{k}(x+2\pi k)$	3. $e^{j\omega_0 n} x[n]$	$X(e^{j(\omega-\omega_0)})$		
5. u[n]	$\frac{1}{1 - e^{-j\omega}} + \sum_{k=-\infty}^{k} n \delta(\omega + 2\pi k)$	4. $x[-n]$	$X(e^{-j\omega})$ $X^*(e^{j\omega})$ if $x[n]$ real.		
6. $(n+1)a^n u[n]$ (<i>a</i> < 1)	$\overline{(1-ae^{-j\omega})^2}$		$d\mathbf{Y}(e^{j\omega})$		
7. $\frac{r^n \sin \omega_p(n+1)}{\sin \omega_n} u[n] (r < 1)$	$\frac{1}{1 - 2r\cos(\omega_{1}e^{-j\omega} + r^{2}e^{-j2\omega})}$	5. $nx[n]$	$j\frac{dx(e^{j-1})}{d\omega}$		
$\sin \omega_{-n}$	$1 = 2r \cos(\mu r) + r + r + r$	6. $x[n] * y[n]$	$X(e^{j\omega})Y(e^{j\omega})$		
8. $\frac{\sin \omega_c n}{\pi n}$	$X(e^{j\omega}) = \begin{cases} 1, & \omega < \omega_c, \\ 0, & \omega_c < \omega \le \pi \end{cases}$	7. $x[n]y[n]$	$\frac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{j\theta})Y(e^{j(\omega-\theta)})d\theta$		
9. $x[n] = \begin{cases} 1, & 0 \le n \le M \\ 0, & \text{otherwise} \end{cases}$	$\frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}e^{-j\omega M/2}$	Parseval's theorem:	<u> </u>		
10. $e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi\delta(\omega-\omega_0+2\pi k)$	$8.\sum_{n=-\infty}^{\infty} x[n] ^{2}=\frac{1}{2\pi}\int_{-\pi}^{\pi} X\left(e^{j\omega}\right) ^{2}d\omega$			
11. $\cos(\omega_0 n + \phi)$	$\sum_{k=-\infty}^{\infty} [\pi e^{j\phi} \delta(\omega - \omega_0 + 2\pi k) + \pi e^{-j\phi} \delta(\omega + \omega_0 + 2\pi k)]$	9. $\sum_{n=-\infty}^{\infty} x[n]y^*[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})Y^*(e^{j\omega})d\omega$			
TABLE 3.1 SOME COMMON <i>z</i> -TRANSFORM	PAIRS				
Sequence T	ransform ROC				
1. δ[n] 1	All z				
2. $u[n]$ $\frac{1}{1-z^{-1}}$	z > 1	TABLE 3.2 SOME z-TRANSFORM PROPERTIES			
$3, -\mu[-n-1]$ <u>1</u>	7 < 1	Property Section			

	1 - 2						
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1	Property	Section	Sequence	Transform	ROC
4. $\delta[n-m]$	z^{-m}	All z except 0 (if $m > 0$) or ∞ (if $m < 0$)	Number	Reference		V(-)	
5 - ⁿ -()	1				x[n]	$\Lambda(2)$	Λ _x
5. $a^{n}u[n]$	$1 - az^{-1}$	z > a			$x_1[n]$	$X_1(z)$	R_{x_1}
6. $-a^n u[-n-1]$	$\frac{1}{1 - 1}$	z < a			$x_2[n]$	$X_2(z)$	R_{x_2}
	$1 - az^{-1}$		1	3.4.1	$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$	Contains $R_{x_1} \cap R_{x_2}$
7. $na^{n}u[n]$	$\frac{u_z}{(1-az^{-1})^2}$	z > a	2	3.4.2	$x[n-n_0]$	$z^{-n_0}X(z)$	R_x , except for the possible
8. $-na^{n}u[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a					the origin or ∞
0	$1-\cos(\omega_0)z^{-1}$	1-1 - 1	3	3.4.3	$z_0^n x[n]$	$X(z/z_0)$	$ z_0 R_x$
9. $\cos(\omega_0 n)u[n]$	$1 - 2\cos(\omega_0)z^{-1} + z^{-2}$	z > 1				dX(z)	_
	$\sin(\omega)z^{-1}$		4	3.4.4	nx[n]	$-z \frac{dz}{dz}$	R_x
10. $\sin(\omega_0 n)u[n]$	$\frac{\sin(\omega_0)z}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$	z > 1	5	3.4.5	$x^{*}[n]$	$X^*(z^*)^2$	R_x
11. $r^n \cos(\omega_0 n) \mu[n]$	$1 - r\cos(\omega_0)z^{-1}$	z > r	6		$\mathcal{R}e\{x[n]\}$	$\frac{1}{-[X(z) + X^*(z^*)]}$	Contains R_r
1111 0000000000000000000000000000000000	$1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}$		-			2	
12. $r^n \sin(\omega_0 n) \mu[n]$	$r\sin(\omega_0)z^{-1}$	z > r	7		$\mathcal{T}_m\{\mathbf{x}[n]\}$	$\frac{1}{-1}[X(z) - X^*(z^*)]$	Contains R.
	$1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}$	hel	,		2([])	2j	Containe M _k
$a^n, \ 0 \le n \le N-1,$	$1 - a^N z^{-N}$		8	3.4.6	$x^{*}[-n]$	$X^{*}(1/z^{*})$	$1/R_x$
15. $[0, \text{ otherwise}]$	$1 - az^{-1}$	z > 0	9	3.4.7	$x_1[n] \ast x_2[n]$	$X_1(z)X_2(z)$	Contains $R_{x_1} \cap R_{x_2}$

Trigonometric Identity:

$$e^{j\Theta} = \cos(\Theta) + j\sin(\Theta)$$

Geometric Series:

$$\sum_{n=0}^{N} r^{n} = \frac{1-r^{N+1}}{1-r}$$
$$\sum_{n=0}^{\infty} r^{n} = \frac{1}{1-r}, |r| < 1$$

DTFT Equations:

$$X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} x[k]e^{-j\omega k}$$
$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})e^{j\omega n} d\omega$$

ESE531

Z-Transform Equations:

$$X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$
$$x[n] = \frac{1}{2\pi j} \oint_{C} X(z) z^{n-1} dz$$

Upsampling/Downsampling:

Upsampling by L (\uparrow L): $X_{up} = X(e^{j\omega L})$ Downsampling by M (\downarrow M): $X_{down} = \frac{1}{M} \sum_{i=0}^{M-1} X(e^{j(\frac{\omega}{M} - \frac{2\pi}{M}i)})$

Interchange Identities:

$$\begin{array}{rcl} x[n] & & & & & \\ & & & \\ & & & \\$$

ESE531

- 1. (20pts) Sampling.
 - (a) Consider the continuous-time signal $x_a(t)$ given below. A discrete-time signal is created by sampling $x_a(t)$ according to $x_a[n] = x_a(nT_s)$ with $F_s = \frac{1}{T_s} = 4W$. Plot the magnitude of the DTFT of $x_a[n]$, $|X_a(e^{j\omega})|$, over $-\pi < \omega < \pi$. Show all work.

$$x_a(t) = \cos(2\pi W t) \tag{1}$$

$$x_a[n] = x_a(nT_s) = \cos(2\pi W \cdot n \cdot \frac{1}{4W}) \tag{2}$$

$$x_a[n] = \cos(\frac{\pi}{2}n) \tag{3}$$

(b) Consider the continuous-time signal $x_b(t)$ given below. A discrete-time signal is created by sampling $x_b(t)$ according to $x_b[n] = x_b(nT_s)$ with $F_s = \frac{1}{T_s} = 3W$. Plot the magnitude of the DTFT of $x_b[n]$, $|X_b(e^{j\omega})|$, over $-\pi < \omega < \pi$. Show all work.

$$x_b(t) = T_s \frac{1}{2} \left(\frac{\sin(2\pi Wt)}{\pi t} + \frac{\sin(2\pi \frac{W}{2}t)}{\pi t} \right)$$

$$\tag{4}$$

$$x_b[n] = x_b(nT_s) = \frac{1}{3W} \cdot \frac{1}{2} \left(\frac{\sin(2\pi W \frac{n}{3W})}{\pi \frac{n}{3W}} + \frac{\sin(2\pi \frac{W}{2} \frac{n}{3W})}{\pi \frac{n}{3W}} \right)$$
(5)

$$x_b[n] = \frac{1}{2} \left(\frac{\sin(\frac{2\pi}{3}n)}{\pi n} + \frac{\sin(\frac{\pi}{3}n)}{\pi n} \right) \tag{6}$$

2. (50pts) Discrete-time Systems. Consider a discrete-time system characterized by the difference equation below where $j = e^{j\frac{\pi}{2}}$.

$$y[n] = j \cdot y[n-1] + x[n] - x[n-4]$$
(7)

(a) Is this an LTI system?Yes. It's a linear constant coefficient difference equation.

(b) Find the transfer function, $H(z) = \frac{Y(z)}{X(z)}$, of the system.

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1 - z^{-4}}{1 - jz^{-1}} = \frac{z^4 - 1}{z^3(z - j)}$$
(8)

$$= \frac{(z-1)(z+1)(z-j)(z+j)}{z^3(z-j)}$$
(9)

$$= \frac{(z-1)(z+1)(z+j)}{z^3}$$
(10)

(c) Find the impulse response, h[n]. HINT: This is a FIR system.

$$H(z) = \frac{(z-1)(z+1)(z+j)}{z^3}$$
(11)

$$= z^{-3}(z-1)(z+1)(z+j)$$
(12)

$$= 1 + jz^{-1} - z^{-2} - jz^{-3}$$
(13)

(14)

h[0]=1, h[1]=j, h[2]=-1, h[3]=-j, h[n]=0 for all other n.

$$h[n] = e^{j\frac{n}{2}n}(u[n] - u[n-4])$$
(15)

(d) Draw the pole zero diagram for this system.

(e) For this same system, write an equivalent difference equation that only depends on the current input and a finite number of past inputs. Use $h[n] = \{1, j, -1, -j\}$

$$y[n] = x[n] * h[n]$$
 (16)

$$= \sum_{m=-\infty}^{\infty} x[n-m]h[m]$$
(17)

$$= x[n] + jx[n-1] - x[n-2] - jx[n-3]$$
(18)

(f) Plot a rough sketch of the magnitude of the frequency response, $|H(e^{j\omega})|$, over $-\pi < \omega < \pi$.

Using the impulse response and Table 2.3 entries 9 and 10 with M = 3 and $\omega_0 = \frac{\pi}{2}$:

$$H(e^{j\omega}) = \frac{\sin((\omega - \frac{\pi}{2})\frac{4}{2})}{\sin((\omega - \frac{\pi}{2})\frac{1}{2})}e^{-j(\omega - \frac{\pi}{2})\frac{3}{2}}$$
(19)

Periodic sinc function with zero crossings at multiples of $\pi/2$ and main/center lobe at $\omega = \frac{\pi}{2}$ with magnitude of 4.

(g) Determine the overall output y[n] of the system when the input is the sum of infinite-length sine waves, $x[n] = 3 + 2^{j\frac{\pi}{2}n} + \sqrt{2}e^{-j\frac{\pi}{2}n} + e^{j\pi}$. There was a typo on the original exam. Should be $x[n] = 3 + 2e^{j\frac{\pi}{2}n} + \sqrt{2}e^{-j\frac{\pi}{2}n} + e^{j\pi n}$. Since this is an LTI system:

$$y[n] = H(e^{j\cdot 0})3 + H(e^{j\cdot \frac{\pi}{2}})2e^{j\frac{\pi}{2}n} + H(e^{-j\cdot \frac{\pi}{2}})\sqrt{2}e^{-j\frac{\pi}{2}n} + H(e^{j\cdot \pi})e^{j\pi n}$$
(20)

$$y[n] = H(e^{j \cdot \frac{\pi}{2}}) 2e^{j \frac{\pi}{2}n}$$
(21)

$$y[n] = 4 \cdot 2e^{j\frac{n}{2}n} \tag{22}$$

3. (30 pts) Resampling and Filtering. Determine the impulse response $h_{eq}[n]$ in Figure 1(b) so that the I/O relationship of the system in Figure 1(b) is exactly the same as the I/O relationship of the system in Figure 1(a). You should work in the frequency domain and show all work. Plot the magnitude of the DTFT of $h_{eq}[n]$, $|H_{eq}(e^{j\omega})|$, over $-\pi < \omega < \pi$.

