University of Pennsylvania Department of Electrical and System Engineering Digital Signal Processing

ESE531, Spring 2019	Final	Monday, May 13

- 4 Problems with point weightings shown. All 4 problems must be completed.
- Calculators allowed.
- Closed book = No text allowed.
- Two two-sided 8.5x11 cheat sheet allowed.
- Sign Code of Academic Integrity statement at back of exam book.

Name:

Grade:

Q1	
Q2	
Q3	
Q4	
Total	

Transform Pairs/Properties and Formulas

TABLE 2.3	FOURIER TRANSFORM PAIRS
THELE L.U	

Sequence	Fourier Transform	TABLE 2.2	FOURIER TRANSFORM THEOREM	ЛS
1. δ[n]	1		Sequence	Fourier Transform
2. $\delta[n - n_0]$	$e^{-j\omega n_0}$		x[n]	$X\left(e^{j\omega} ight)$
3. 1 $(-\infty < n < \infty)$	$\sum_{k=1}^{\infty} 2\pi\delta(\omega+2\pi k)$		<i>y</i> [<i>n</i>]	$Y(e^{j\omega})$
4. $a^n u[n]$ (<i>a</i> < 1)	$\frac{1}{1 - ae^{-j\omega}}$	1. $ax[n] + by[n]$		$aX(e^{j\omega}) + bY(e^{j\omega})$
		2. $x[n - n_d]$	$(n_d \text{ an integer})$	$e^{-j\omega n_d} X(e^{j\omega})$
5. u[n]	$\frac{1}{1-e^{-j\omega}}+\sum_{k=-\infty}^{\infty}\pi\delta(\omega+2\pi k)$	3. $e^{j\omega_0 n} x[n]$		$X(e^{j(\omega-\omega_0)})$
		4. $x[-n]$		$X(e^{-j\omega})$
6. $(n+1)a^n u[n]$ $(a < 1)$	$\frac{1}{(1-ae^{-j\omega})^2}$			$X^*(e^{j\omega})$ if $x[n]$ real.
7. $\frac{r^n \sin \omega_p (n+1)}{\sin \omega_p} u[n]$ (r < 1)	$\frac{1}{1 - 2 - 2 - 2 - i20}$	5. nx[n]		$j \frac{dX \left(e^{j\omega}\right)}{d\omega}$
$\sin \omega_p$	$1 - 2r\cos\omega_p e^{-j\omega} + r^2 e^{-j\omega\omega}$	6. $x[n] * y[n]$		$X(e^{j\omega})Y(e^{j\omega})$
8. $\frac{\sin \omega_c n}{\pi n}$	$X(e^{j\omega}) = \begin{cases} 1, & \omega < \omega_c, \\ 0, & \omega_c < \omega \le \pi \end{cases}$	7. $x[n]y[n]$		$\frac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{j\theta})Y(e^{j(\omega-\theta)})d\theta$
9. $x[n] = \begin{cases} 1, & 0 \le n \le M \\ 0, & \text{otherwise} \end{cases}$	$\frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}e^{-j\omega M/2}$	Parseval's the	orem:	$\sum v J = \pi$
10. $e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi\delta(\omega-\omega_0+2\pi k)$	$8.\sum_{n=-\infty}^{\infty} x[n] $	$ ^2 = rac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) ^2 d\omega$	
11. $\cos(\omega_0 n + \phi)$	$\sum_{k=-\infty}^{\infty} [\pi e^{j\phi} \delta(\omega - \omega_0 + 2\pi k) + \pi e^{-j\phi} \delta(\omega + \omega_0 + 2\pi k)]$	9. $\sum_{n=-\infty}^{\infty} x[n]y$	$^{*}[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) Y^{*}(e^{j\omega}) d\omega$	
TABLE 3.1 SOME COMMON z-TRANSFO	RM PAIRS			
Sequence	Transform ROC			

1. $\delta[n]$	1	All z					
2. <i>u</i> [<i>n</i>]	$\frac{1}{1-z^{-1}}$	z > 1	TABLE 3.2	SOME z-TRAN	ISFORM PROPERTIES		
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1	Property Number	Section Reference	Sequence	Transform	ROC
4. $\delta[n-m]$	z^{-m}	All z except 0 (if $m > 0$) or ∞ (if $m < 0$)			x[n]	X(z)	R _x
5. $a^{n}u[n]$	$\frac{1}{1-az^{-1}}$	z > a			$x_1[n]$	$X_1(z)$	R_{x_1}
6. $-a^n u[-n-1]$	$\frac{1}{1}$	z < a			$x_2[n]$	$X_2(z)$	R_{x_2}
	$1 - az^{-1}$		1	3.4.1	$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$	Contains $R_{x_1} \cap R_{x_2}$
7. $na^{n}u[n]$	$\frac{az}{(1-az^{-1})^2}$	z > a	2	3.4.2	$x[n-n_0]$	$z^{-n_0}X(z)$	R_x , except for the possible
8. $-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a					addition or deletion of the origin or ∞
0 225(1) 1) 1/2	$1-\cos(\omega_0)z^{-1}$	I-I - 1	3	3.4.3	$z_0^n x[n]$	$X(z/z_0)$	$ z_0 R_x$
9. $\cos(\omega_0 n)u[n]$	$\overline{1-2\cos(\omega_0)z^{-1}+z^{-2}}$	z > 1	4	3.4.4	nx[n]	$-z \frac{dX(z)}{dx(z)}$	Rr
10. $\sin(\omega_0 n)u[n]$	$\frac{\sin(\omega_0)z^{-1}}{1-2\cos(\omega_0)z^{-1}+z^{-2}}$	z > 1	5	3.4.5	$x^*[n]$	$X^*(z^*)$	R_x
11. $r^n \cos(\omega_0 n) u[n]$	$\frac{1 - r\cos(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$	z > r	6		$\mathcal{R}e\{x[n]\}$	$\frac{1}{2}[X(z)+X^*(z^*)]$	Contains R_x
12. $r^n \sin(\omega_0 n) u[n]$	$\frac{r\sin(\omega_0)z^{-1}}{1-2r\cos(\omega_0)z^{-1}+r^2z^{-2}}$	z > r	7		$\mathcal{I}m\{x[n]\}$	$\frac{1}{2i}[X(z) - X^*(z^*)]$	Contains R_x
$a^n, \ 0 \le n \le N-1,$	$1-a^N z^{-N}$		8	3.4.6	$x^{*}[-n]$	$X^{*}(1/z^{*})$	$1/R_x$
15. $\left\{ 0, \text{ otherwise} \right\}$	$1 - az^{-1}$	z > 0	9	3.4.7	$x_1[n] \ast x_2[n]$	$X_1(z)X_2(z)$	Contains $R_{x_1} \cap R_{x_2}$

ESE531

Trigonometric Identity:

$$e^{j\Theta} = \cos(\Theta) + j\sin(\Theta)$$

Geometric Series:

$$\sum_{n=0}^{N} r^n = \frac{1-r^{N+1}}{1-r}$$
$$\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}, |r| < 1$$

DTFT Equations:

$$\begin{split} X(e^{j\omega}) &= \sum_{k=-\infty}^{\infty} x[k] e^{-j\omega k} \\ x[n] &= \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega \end{split}$$

Z-Transform Equations:

$$X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$
$$x[n] = \frac{1}{2\pi j} \oint_{C} X(z) z^{n-1} dz$$

Upsampling/Downsampling:

Upsampling by L (
$$\uparrow$$
L): $X_{up} = X(e^{j\omega L})$
Downsampling by M (\downarrow M): $X_{down} = \frac{1}{M} \sum_{i=0}^{M-1} X(e^{j(\frac{\omega}{M} - \frac{2\pi}{M}i)})$

Interchange Identities:

$$x[n] \rightarrow H(z) \rightarrow \uparrow L \rightarrow y[n] \equiv x[n] \rightarrow \uparrow L \rightarrow H(z^{L}) \rightarrow y[n]$$
$$x[n] \rightarrow \downarrow M \rightarrow H(z) \rightarrow y[n] \equiv x[n] \rightarrow H(z^{M}) \rightarrow \downarrow M \rightarrow y[n]$$

DFT Equations:

N-point DFT of $\{x[n], n = 0, 1, ..., N - 1\}$ is $X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi}{N}kn}$, for k = 0, 1, ..., N - 1N-point IDFT of $\{X[k], k = 0, 1, ..., N - 1\}$ is $x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k]e^{j\frac{2\pi}{N}kn}$, for n = 0, 1, ..., N - 1

ESE531

1. (30 points) Consider the stable LTI system with transfer function:

$$H(z) = \frac{1 - 4z^{-2}}{1 - \frac{1}{4}z^{-1} - \frac{3}{8}z^{-2}}$$
(1)

The system function H(z) can be factored such that:

$$H(z) = H_{min}(z)H_{ap}(z) \tag{2}$$

where $H_{min}(z)$ is a minimum phase system, and $H_{ap}(z)$ is an all pass system, i.e.,

$$|H_{ap}(z)| = 1 \tag{3}$$

(a) Draw the pole-zero diagram for H(z), and indicate the region of convergence on your diagram.

(b) For both the minimum phase system, $H_{min}(z)$, and all pass system, $H_{ap}(z)$, write expressions for the transfer functions including the region of convergence for each transfer function.

(c) Draw the pole-zero diagrams for both the minimum phase system, $H_{min}(z)$, and all pass system, $H_{ap}(z)$. Indicate the regions of convergence on your diagrams.

- 2. (20 points)
 - (a) Determine the impulse response h[n] in Figure 1(b) so that the I/O relationship of the system in Figure 1(b) is exactly the same as the I/O relationship of the system in Figure 1(a). Hint: Analyze the system of Figure 1(a) in the frequency domain with the interchange identities.

(b) Determine the impulse response $h_{eq}[n]$ in Figure 2(b) so that the I/O relationship of the system in Figure 2(b) is exactly the same as the I/O relationship of the system in Figure 2(a). Hint: Analyze the system of Figure 2(a) in the time domain with the interchange identities.

8

3. (20 points) In the system shown in the figure below, $x_1[n]$ and $x_2[n]$ are both causal, 32-point sequences (that is, they are both zero outside the interval $0 \le n \le 31$). y[n]denotes the linear convolution of $x_1[n]$ and $x_2[n]$, such that $y[n] = x_1[n] * x_2[n]$.

(a) Determine **all values** of N for which all the values of y[n] can be completely recovered from $x_5[n]$. Explain your answer. (Hint: Think carefully how long y[n], $x_3[n]$ and $x_4[n]$ are.)

(b) Specify explicitly how you can recover y[n] from $x_5[n]$ for the **smallest** value of N which you determined in part (a).

4. (30 points) A system for the discrete-time spectral analysis of continuous-time signals is shown below

w[n] is a rectangular window of length 32:

$$w[n] = \begin{cases} 1/32 & \text{if } 0 \le n \le 31\\ 0 & \text{else} \end{cases}$$
(4)

Listed below are ten continuous-time signals which could possibly be $x_c(t)$.

 $\begin{array}{ll} x_1(t) = 1000 cos(230\pi t) & x_6(t) = 1000 e^{j(250)\pi t} \\ x_2(t) = 1000 cos(115\pi t) & x_7(t) = 10 cos(250\pi t) \\ x_3(t) = 10 e^{j(460)\pi t} & x_8(t) = 1000 cos(218.75\pi t) \\ x_4(t) = 1000 e^{j(230)\pi t} & x_9(t) = 10 e^{j(200)\pi t} \\ x_5(t) = 10 e^{j(230)\pi t} & x_{10}(t) = 1000 e^{j(187.5)\pi t} \end{array}$

(a) Indicate which signal(s) above could have been the input $x_c(t)$ for the plot of $|V_a[k]|$. Explain your reasoning for full credit.

ESE531

(b) Indicate which signal(s) above could have been the input $x_c(t)$ for the plot of $|V_b[k]|$. Explain your reasoning for full credit.

ESE531

(c) Indicate which signal(s) above could have been the input $x_c(t)$ for the plot of $|V_c[k]|$. Explain your reasoning for full credit.

ESE531