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• 4 Problems with point weightings shown. All 4 problems must be completed.

• Calculators allowed.

• Closed book = No text allowed.

• Two two-sided 8.5x11 cheat sheet allowed.

• Sign Code of Academic Integrity statement at back of exam book.
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Transform Pairs/Properties and Formulas
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Trigonometric Identity:

ejΘ = cos(Θ) + jsin(Θ)

Geometric Series: ∑N
n=0 r

n = 1−rN+1

1−r∑∞
n=0 r

n = 1
1−r , |r| < 1

DTFT Equations:

X(ejω) =
∑∞

k=−∞ x[k]e−jωk

x[n] = 1
2π

∫ π
−πX(ejω)ejωndω

Z-Transform Equations:

X(z) =
∑∞

n=−∞ x[n]z−n

x[n] = 1
2πj

∮
C

X(z)zn−1dz

Upsampling/Downsampling:
Upsampling by L (↑L): Xup = X(ejωL)

Downsampling by M (↓M): Xdown = 1
M

∑M−1
i=0 X(ej(

ω
M
− 2π
M
i))

Interchange Identities:

DFT Equations:

N-point DFT of {x[n], n = 0, 1, ..., N − 1} is X[k] =
N−1∑
n=0

x[n]e−j
2π
N
kn, for k = 0, 1, ..., N − 1

N-point IDFT of {X[k], k = 0, 1, ..., N −1} is x[n] = 1
N

N−1∑
k=0

X[k]ej
2π
N
kn, for n = 0, 1, ..., N −1

3



ESE531 Spring 2019

1. (30 points) Consider the stable LTI system with transfer function:

H(z) =
1− 4z−2

1− 1
4
z−1 − 3

8
z−2

(1)

The system function H(z) can be factored such that:

H(z) = Hmin(z)Hap(z) (2)

where Hmin(z) is a minimum phase system, and Hap(z) is an all pass system, i.e.,

|Hap(z)| = 1 (3)

(a) Draw the pole-zero diagram for H(z), and indicate the region of convergence on
your diagram.

H(z) =
(1− 2z−1) (1 + 2z−1)(
1− 3

4
z−1
) (

1 + 1
2
z−1
)
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(b) For both the minimum phase system, Hmin(z), and all pass system, Hap(z), write
expressions for the transfer functions including the region of convergence for each
transfer function.

Hmin(z): Hmin(z) =
1−1

2z
−1

1−3
4z
−1 ROC: |z| > 3

4

Hap(z): Hap(z) =
(1−2z−1)(1+2z−1)
(1−1

2z
−1)(1+1

2z
−1)

ROC: |z| > 1
2
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(c) Draw the pole-zero diagrams for both the minimum phase system, Hmin(z), and
all pass system, Hap(z). Indicate the regions of convergence on your diagrams.
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2. (20 points)

(a) Determine the impulse response h[n] in Figure 1(b) so that the I/O relationship
of the system in Figure 1(b) is exactly the same as the I/O relationship of the
system in Figure 1(a). Hint: Analyze the system of Figure 1(a) in the frequency
domain with the interchange identities.

h[n]: heq[n] = 2
sin(π8n)
πn cos

(
5π
8 n
)

Using the interchange identities:

The two filters have the following magnitude responses:

This results in the equivalent filter having the following magnitude response:
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(b) Determine the the impulse response heq[n] in Figure 2(b) so that the I/O rela-
tionship of the system in Figure 2(b) is exactly the same as the I/O relationship
of the system in Figure 2(a). Hint: Analyze the system of Figure 2(a) in the time
domain with the interchange identities.

where h1[n] = δ[n]− δ[n− 1].

heq[n]: heq[n] = δ[n]− δ[n− 1]− δ[n− 2] + δ[n− 3]

We have the same interchange identity as above, where we interchange the first
filter, h1[n], and upsampling block with the upsampling block and expanded filter,
h1,exp[n]. The expanded filter has an upsampled impulse response and therefore
the impulse responses can be drawn as:
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3. (20 points) In the system shown in the figure below, x1[n] and x2[n] are both causal,
32-point sequences (that is, they are both zero outside the interval 0 ≤ n ≤ 31). y[n]
denotes the linear convolution of x1[n] and x2[n], such that y[n] = x1[n] ∗ x2[n].

(a) Determine all values of N for which all the values of y[n] can be completely
recovered from x5[n]. Explain your answer. (Hint: Think carefully how long y[n],
x3[n] and x4[n] are.)

The signals x3[n] and x4[n] are each length 63. In that sense, the linear convolution
has length 63 + 63 − 1 = 125, and can be obtained with N ≥ 125. Every other
sample of that linear convolution is 0, as can be seen using the flip-and-slide
interpretation of the linear convolution of x3[n] and x4[n], which both have values
of 0 for every other sample. The nonzero values correspond to values of y[n].

However, since y[n] is only length 32 + 32−1 = 63, we may be able to use smaller
values of N in the circular convolution, though we need N ≥ 63. Suppose we
make N an odd number such that 63 ≤ N < 125. Then first, the aliased samples
from circular convolution will fall in the positions of the 0 values in x5[n]. Second,
when these values are nonzero, they correspond to values of y[n]. Third, since N
is larger than 63 we get all samples of y[n].

Therefore we can use any odd number for N such that 63 ≤ N < 125, and any
odd or even N such that N ≥ 125.

(b) Specify explicitly how you can recover y[n] from x5[n] for the smallest value of
N which you determined in part (a).

For N = 63, start with x5[0] and select every other sample. These are y[0]
through y[31]. Then start with x5[1] and select every other sample. These are
y[32] through y[62]. This interleaving is described as:
{x5[0], x5[1], x5[2], x5[3], x5[4], ...x5[62]} = {y[0], y[32], y[1], y[33], y[2], ...x5[62]}
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4. (30 points) A system for the discrete-time spectral analysis of continuous-time signals
is shown below

w[n] is a rectangular window of length 32:

w[n] =

{
1/32 if 0 ≤ n ≤ 31

0 else
(4)

Listed below are ten continuous-time signals which could possibly be xc(t).

x1(t) = 1000cos(230πt) x6(t) = 1000ej(250)πt

x2(t) = 1000cos(115πt) x7(t) = 10cos(250πt)
x3(t) = 10ej(460)πt x8(t) = 1000cos(218.75πt)
x4(t) = 1000ej(230)πt x9(t) = 10ej(200)πt

x5(t) = 10ej(230)πt x10(t) = 1000ej(187.5)πt
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(a) Indicate which signal(s) above could have been the input xc(t) for the plot of
|Va[k]|. Explain your reasoning for full credit.

The graph shows two peaks, one corresponding to positive frequencies and one
to negative frequencies (i.e in the upper half of the DFT). This means the input
signal is a cosine signal. The two peaks occur at k = 4 and k = 28:

ω|k=4 =
2π

N
(k) =

2π

32
(4) =

π

4

ω|k=28 =
2π

N
(k) =

2π

32
(28) =

7π

4
= −π

4

Additionally with the magnitude being less than 5, we know that x7(t) is the only
candidate that fits. But we can check that the continuous time frequency matches
as well:

Ω =
ω

T
→ Ω|k=4 =

π

4
· 1

10−3
= 250π
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(b) Indicate which signal(s) above could have been the input xc(t) for the plot of
|Vb[k]|. Explain your reasoning for full credit.

The graph shows just one peak, so we can eliminate any cosine signals. This
means the input signal is a complex sinusoid at just one frequency. Additionally
the scale of the magnitude is close to 1000, so we can eliminate all but signals
x4(t), x6(t), and x10(t). The continuous time frequency does not correspond to a
freqeuncy ωk = 2πk

32
because if it did we would only have one non-zero DFT value.

x6(t) : Ω = 250π → ω = ΩT = 250π · 10−3 =
π

4
→ k = 4

x10(t) : Ω = 187.5π → ω = ΩT = 187.5π · 10−3 =
3π

16
→ k = 3

The only signal left is x4(t) and we can see that the continuous time frequency
does not correspond to a DT frequency that is an integer multiple of 2π

32
:

x4(t) : Ω = 230π → ω = ΩT = 230π · 10−3 =
23π

100
→ k /∈ Z
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(c) Indicate which signal(s) above could have been the input xc(t) for the plot of
|Vc[k]|. Explain your reasoning for full credit.

The graph shows just one peak, so we can eliminate any cosine signals. This means
the input signal is a complex sinusoid at just one frequency. Additionally the scale of
the magnitude is close to 1000, so we can eliminate all but signals x4(t), x6(t), and
x10(t). This time continuous time frequency does correspond to a freqeuncy ωk = 2πk

32

because we only have one non-zero DFT value at k = 3, which we know corresponds
to x10(t)

x10(t) : Ω = 187.5π → ω = ΩT = 187.5π · 10−3 =
3π

16
→ k = 3
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