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Optimal Filter Design

a Window method
= Design Filters heuristically using windowed sinc functions

= Choose order and window type

= Check DTFT to see it filter specs are met
0 Optimal design
s Design a filter h[n] with H(e/%)

s Approximate H,(e/?) with some optimality critetia - or
satisties specs.
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Mathematical Optimization

(mathematical) optimization problem

minimize  fo(z)
subject to  fi(x) <b;, i=1,...,m

e r = (x1,...,%,): optimization variables
e fo:R"™ — R: objective function
e fi:R" >R, i=1,...,m: constraint functions

optimal solution z* has smallest value of f; among all vectors that
satisfy the constraints
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Examples

portfolio optimization
e variables: amounts invested in different assets
e constraints: budget, max./min. investment per asset, minimum return

e objective: overall risk or return variance

device sizing in electronic circuits
e variables: device widths and lengths
e constraints: manufacturing limits, timing requirements, maximum area

e objective: power consumption

data fitting
e variables: model parameters
e constraints: prior information, parameter limits

e objective: measure of misfit or prediction error
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Solving Optimization Problems

general optimization problem

e very difficult to solve

e methods involve some compromise, e.g., very long computation time, or
not always finding the solution

exceptions: certain problem classes can be solved efficiently and reliably

e least-squares problems
e linear programming problems

e convex optimization problems
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Least-Squares Optimization

minimize || Az — bl|2

solving least-squares problems

e analytical solution: z* = (ATA)~1ATb

e reliable and efficient algorithms and software

e computation time proportional to n2k (A € R¥*™); less if structured

e a mature technology

using least-squares

e least-squares problems are easy to recognize

e a few standard techniques increase flexibility (e.g., including weights,
adding regularization terms)
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linear Programming

minimize ¢z

subject to alz <b;, i=1,...,m
solving linear programs
e no analytical formula for solution
e reliable and efficient algorithms and software

e computation time proportional to n?m if m > n; less with structure

e a mature technology

using linear programming
e not as easy to recognize as least-squares problems

e a few standard tricks used to convert problems into linear programs
(e.g., problems involving #1- or £,.-norms, piecewise-linear functions)
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Convex Optimization

minimize  fo(2)
subject to fi(z) <b;, i=1,...,m

e objective and constraint functions are convex:

filaz + By) < afi(z) + Bfi(y)
fa+08=1a>0 6>0

e includes least-squares problems and linear programs as special cases
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Optimality — Least Squares

A Hd(ejw)

W Ws T
0 Least Squares:

minimize / |H(e’¥) — Hy(e?*)|*dw
weEcare

0 Variation: Weighted Least Squares:

™
minimize W (w)|H(e’%) — Hgq(e?¥)|*dw
—
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Design Through Optimization

0 Idea: Sample/discretize the frequency response
H(e’) = H(e?™*)

0 Sample points are fixed Wy = k%

—T<w < - <wp <

0 M+1 1s the filter order
a P>>M + 1 (rule of thumb P=15M)

0 Yields a (good) approximation of the original

problem

Penn ESE 531 Spring 2019 — Khanna
Adapted from M. Lustig, EECS Berkeley

10



Example: Least Squares

0 Target: Design M+1= 2N+1 filter

o First designh non-causal H (ej “) and hence h[n]
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Example: Least Squares

0 Target: Design M+1= 2N+1 filter

o First designh non-causal H (ej “) and hence h[n]
0 Then, shift to make causal

hin] = h[n — M/2]

H(e¥) =e™ ﬁ(ejw)
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. Example: Least Squares

h = [ﬁ[—N], h[-N +1],--- ,ﬁ[N]]T

h— [Hd(ejwl),' .

A=

3 e_.?wl(_N)

e_jwl;(_N)

) Hd(ejwp)

]T
e—Jwi(+N)

e—ij(+N)

argmin; |Ah — b||?
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Least-Squares

argmin; ||Ah — b||?

Solution:

h=(A*A)"tA*b

0 Result will generally be non-symmetric and complex
valued.

0 However, if H (ej“’) is real, h[n] should have
symmetty!
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Design of Linear-Phase L.P Filter

Q Suppose:
s H (ejw) is real-symmetric
= Mis even (M+1 length)
a Then:
= h[n] is real-symmetric around midpoint

a So:

H(e’*) = h[0] + h[l]e 7% 4 h[—1]etI¥
+h[2e % 4 h[—2]eTI%. ..

= h[0] + 2 cos(w)h[1] + 2 cos(2w)h[2] + - - -
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Reminder: FIR GLP: Type I — Example, M=4

Type I Even Symmetry, M even
hinl=h[M —n], n=0,1,...M

M
Then H(ejw) — Zh[n]e‘lw’? — A(W) e—ja)M/Z
n=0 Real, Even " integer delay

H(e’®)=h[0]+ H[1]e/” + h[2]e 7 + h[3]e 7*? + h[4]e 7/ **
=e 2| h[0]e’>” + h[1]e’” + h[2]+ h[1]e 7 + A[0]e /> |

— [2h[0: cos(2w) + 2h[1]cos(w) + h[2]] 20
A(w) (even)
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Least-Squares Linear Phase Filter

A Hd(ejw)

\ .
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Least-Squares Linear Phase Filter

Given M, wp, ws find the best LS filter:

—.

e = [0, -+ B |7 = (A°4) A%

1

n >0
n <0

h[n] = hjn — M/2]
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Extension:

a LS has no preference for pass band or stop band

0 Use weighting of LS to change ratio

want to solve the discrete version of:

minimize W (w)|H (e’) — Hy(e?)|*dw

where W(w) is dp in the pass band and &s in stop band

Similarly: W(w) is 1 in the pass band and 6p/ds in stop band
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Weighted Least-Squares

argmin;, (Ahy — b)*W?(Ahy —b)

Solution:
hy = (A*W2A)"1W?2A4%D
- . -
1
W = 5
ds
0 £
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Optimality — min-max

0 Chebychev Design (min-max)

minimize,ccare max |H(e’¥) — Hy(e?®)

= Parks-McClellan algorithm - equiripple
= Also known as Remez exchange algorithms (signal.remez)

s Can also use convex optimization
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Parks-McClellan

0 Allows for multiple pass- and stop-bands.

a Is an equi-ripple design in the pass- and stop-bands,
but allows independent weighting of the ripple in
each band.

a Allows specification of the band edges.
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Parks-McClellan: LLP Filter

1+,

1-0'1

equi-ripple transition
pass-band stop-band
/ equi-ripple
_________________ I ¥
> w
D D T

0 For the low-pass filter shown above the specifications are

1-6, < H(e¥) < 1+46;
—52 < H(e“") < (52
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Parks-McClellan: LLP Filter

0 Need to determine M+1 (length of the filter) and
the filter coefficients {h_}
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Parks-McClellan: LLP Filter

0 Need to determine M+1 (length of the filter) and
the filter coefficients {h_}

a If we assume M even and even symmetry FIR filter

(Type I), then

L
A (e/?) = h,[0] + Z 2h,[n]cos(wn).

n=1

H(ejw) — Ae(ejw)e—jwM/Z.
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Parks-McClellan: LLP Filter

0 Reformulate

L
A, (e!?) = h,[0] + Z 2h,[n]cos(wn).

n=1

a To fitting a polynomial
L

Ac(e”) =) ar(cosw)*,

k=0

L

Ae(ejw) = P(X)|x=cos w P(x) = Zakxk'

k=0
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Parks-McClellan: LLP Filter

0 Define approximation error function

E(w) = W(w)[Hg(e’?) — A.(e’?)],

d2/6; in the pass-band
W(e“) =<1 in the stop-band

0 in the transition band.
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Parks-McClellan: LLP Filter

0 Define approximation error function

E(w) = W(w)[Hg(e’?) — A.(e’?)],

0 Apply min-max or Chebyshev criteria

min (maxlE(w)I).
{h.|n]:0<n<L} \ weF
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Min-Max Filter Design

0 Constraints:

= min-max pass-band ripple

1 -6, <|H(¥)| <1

= min-max stop-band ripple

[H(e?)] < 45,
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Min-Max Ripple Design

0 Given W, W, M, find O, hy

1+9
1 —
i =90

minimize ) \ 6\

Subject to : S
1 -6 < H(E“*) <146 0<wp<wy
—6 < H(e?¥*) < § ws <wp <
0>0

0 Formulation is a linear program with solution O, h_

0 A well studied class of problems with good solvers
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Min-Max Ripple via LP

minimize 4
subject to :
1 -0 < Aphy <146
=< Aghy <6
0> 0

1 2cos(w;) -+ 2cos(Mw)
A, = :

1 2cos(wp) -+ 2cos(Mwpy)

1 2cos(ws) -+ 2cos(¥Mws) '
A, = : capital P
1 2cos(wp) -+ 2cos(Hwp)
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Parks-McClellan

0 The method is based on reformulating the problem
as one in polynomial approximation, using

Chebyshev polynomials
| L
A (e!?) = Z ay (cos w)*,
k=0
L
Ae(€’?) = P(x)|x=cos - P(x) =) arx".
k=0
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Parks-McClellan — Alternation Theorem

0 The algorithm uses Chebyshev’s alternation theorem
to recognize the optimal solution.

Define the error E(z) as above, namely
E(e¥) =W(e*) (Ha(e®) - H(™))
and the maximum error as
IE(e“)]lo0 = argmax,eq [E(e*)]
A necessary and sufficient condition that H(e'“) is the unique Lth-order
polynomial minimizing ||E(e&“)||« is that E(e'“) exhibit at least L + 2
extremal frequencies, or “alternations”, that is there must exist at least L+ 2

values of w, wy € Q, k= [0,1,...,L + 1], such that wy < wy < ... < w4y,
and such that

E(*) = —B() = (|| E(¢)]as)
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Parks-McClellan — Alternation Theorem

A H(ejo)| - - M+1=17-> L=8
o  fansition - Must exhibit at least 10
; 7/_/ X SN points of alternation to be
1-61 % 7 optimal
pass-band stop-band
i /\/g alternation frequencies
O | e R
2 " 7
0 Dy é)s T > @
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"heorem

Alternation "

“xample - 5th order
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Parks—McClellan algorithm

Penn ESE 531 Spring 2019 - Khanna

Initial guess of
(L + 2) extremal frequencies

>

Changed

>

Y

Calculate the optimum
6 on extremal set

Interpolate through (L + 1)
points to obtain A,(e’*)

Calculate error E(w)
and find local maxima
where |E(w)l =6

f

More than
(L+2)
extrema?

No

Yes

Retain (L + 2)
largest
extrema

Y

Check whether the
extremal points changed

Unchanged

Best approximation
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MATILAB Parks-McClellan Function

b = firpm(M,F,A,W)
= b is the array of filter coetficients (impulse response)
= M is the filter order (M+1 is the length of the filter),
= F is a vector of band edge frequencies in ascending order
= Ais aset of filter gains at the band edges

= Wis an optional set of relative weights to be applied to
each of the bands
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MATILAB Parks-McClellan Function

A Hy(e’)
pass
1
pass
0.7
stop stop stop
>
0 W1 W2 w3 W4 W5 Wg W7 g T
transition transition transition transition

F = [O W) Wy w3y WwWq Wy Wg Wy Wy 1]
A=[001 1 0 0 07 07 0 0]
w=1[101 10 1 10]
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MATLAB Example

a0 Design a 33 length PM band-pass filter and weight the stop-
band ripple 10x more than the pass-band ripple

\ H,(e/”)

N

ass
10|-——————————————- 2

stop stop

0 0.2n 0.4 0.71 0.85n T
transition transition

>wm

h=firpm(32,[0 0.2 0.4 0.7 0.85 1],[0 0 10 10 0 0],[10 1 10])
freqz(h,1)
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MATLAB Example

Q ( | | | | ‘op-
De o op
ban  _
g 0 -~ ™~
3 4 \n
=
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S 7 v‘ R
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Optimality — Least Squares

A Hd(ejw)

W Ws
0 Least Squares:

minimize / H(5%) — Hoy(e*)[2dw
wEcare

0 Parks-McClellan

min (max |E(a))|),
{he[n]:0<n<L} \ weF
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Least-Squares vs. Min-Max

Least-squares vs equiripple

T
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Example of Complex Filter

0 Larson et. al, “Multiband Excitation Pulses for Hyperpolarized 13C
Dynamic Chemical Shift Imaging” JMR 2008;194(1):121-127

0 Need to design length 11 filter with following frequency response:

1

k3

).500 0 500
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Convex Optimization

a0 Many tools and Solvers

a Tools:
s CVX (Matlab) http://cvxr.com/cvx/

= CVXOPT, CVXMOD (Python)
0 Engines:

= Sedumi (Free)

= MOSEK (commercial)
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Using CVX (in Matlab)

M = 16; h(n)

wp = 0.5%pi; 08
ws = 0.6%pi; 0al
MM = 15*M; o | ¢
w = linspace(0,pi, MM); 02p ‘ !
- 1 o
idxp = find(w <=wp); '
idxs = find(w >=ws); e S T T TR

Ap = [ones(length(idxp), 1) 2*cos(kron(w(idxp)',
[1:M2])]; i T
As = [ones(length(idxs),1) 2*cos(kron(w(idxs)', ) l H (_ ¢ ) )i ) ) . . # h(( )
[1:M/2])];

% optimization

cvx_begin “
variable hh(M/2+1,1);
variable d(1,1); =

minimize(d)

Subject to % i T i E =35 ¢ T — i’ ‘.: W

Ap*hh <=1+d;
Ap*hh >=1-d;
As*hh < d;
As*hh > -d;
ds>0;
cvx_end
h = [hh(end:-1:1) ; hh(2:end)];
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Admin

o HW 7 due 3/31 Sunday
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