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a0 Compressive Sampling/Sensing
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Compressive Sampling

Anythin
. ything —
0
0 What is the rate you need to sample at?
= At least Nyquist
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Compressive Sampling

Something
| T
0
0 What is the rate you need to sample at?
= Maybe less than Nyquist...
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First: Compression

0 Standard approach

= First collect, then compress

= Throw away unnecessary data
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First: Compression

a0 Examples

o Audio — 10x
= Raw audio: 44.1kHz, 16bit, stereo = 1378 Kbit/sec
= MP3: 44.1kHz, 16 bit, stereo = 128 Kbit/sec

= Images — 22x

= Raw image (RGB): 24bit/pixel

= JPEG: 1280x960, normal = 1.09bit/pixel
s Videos — 75x

= Raw Video: (480x360)p/frame x 24b/p x 24frames/s + 44.1kHz
x 16b x 2 = 98,578 Kbit/s

= MPEG4: 1300 Kbit/s
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First: Compression

0 Almost all compression algorithm use transform
coding
= mp3: DCT
= JPEG: DCT
= JPEG2000: Wavelet
s MPEG: DCT & time-difference
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First: Compression

0 Almost all compression algorithm use transform
coding
= mp3: DCT
= JPEG: DCT

s JPEG2000: Wavelet E A
s MPEG: DCT & time-difference
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: Sparse Transform
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Sparse Transform
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Sparsity
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Signal Processing Trends

0 Traditional DSP = sample first, ask questions later

Penn ESE 531 Spring 2019 - Khanna

12



Signal Processing Trends

0 Traditional DSP = sample first, ask questions later

o Explosion in sensor technology/ubiquity has caused
two trends:

= Physical capabilities of hardware are being stressed,
increasing speed/resolution becoming expensive

= gigahertz+ analog-to-digital conversion
s accelerated MRI
= industrial imaging

= Deluge of data

= camera arrays and networks, multi-view target databases,
streaming video...
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Signal Processing Trends

0 Traditional DSP = sample first, ask questions later

o Explosion in sensor technology/ubiquity has caused
two trends:
= Physical capabilities of hardware are being stressed,

increasing speed/resolution becoming expensive

= gigahertz+ analog-to-digital conversion
s accelerated MRI
= industrial imaging

= Deluge of data

= camera arrays and networks, multi-view target databases,
streaming video...

0 Compressive Sensing 2 sample smarter, not faster
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Compressive Sensing/Sampling

0 Standard approach

= First collect, then compress

= Throw away unnecessary data
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Compressive Sensing

a Shannon/Nyquist theorem is pessimistic

= 2Xbandwidth is the worst-case sampling rate — holds
uniformly for any bandlimited data

= sparsity/compressibility is irrelevant

= Shannon sampling based on a linear model, compression
based on a nonlinear model

0 Compressive sensing

= new sampling theory that leverages compressibility

= key roles played by new uncertainty principles and
randomness

Penn ESE 531 Spring 2019 - Khanna
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Sensing to Data

sensor

Data
Converter

ADS5485

TEXAS
INSTRUMENTS

“fast” ADC data compression

Data
Converter

i§ TEXAS
INSTRUMENTS

“compressive” “slow” ADC
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Compressive Sampling

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in most cases
exactly recover
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Compressive Sampling

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in most cases
exactly recover

Sparse signal in time Frequency spectrum
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Compressive Sampling

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in most cases
exactly recover

Undersampled in time
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Compressive Sampling

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in most cases
exactly recover

Undersampled in time
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Compressive Sampling

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in most cases
exactly recover

Undersampled in frequency

ndersampled in time = .
Undersampled (reconstructed in time with IFFT)
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Compressive Sampling

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in most cases

exactly recover

Undersampled in time

Undersampled in frequency
(reconstructed in time with IFFT)
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Compressive Sampling: Simple
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Compressive Sampling

0 Sense signal M times
0 Recover with linear

Input signal with undersampled measurements circled {~17.5% of Myquist samples)
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Compressive Sampling
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Fxample: Sum of Sinusoids

Fecovered spectrum using L1 minimization

J o Two relevant “knobs”
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Example: Increasing M
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“xample: Increasing M

(mHz)
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Example: Increasing T
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“xample: Increasing T
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Numerical Recovery Curves

a0 Sense S-sparse signal of length N randomly M times

00 - - - . 4
o} N=256 ]
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% success

= In practice, perfect recovery occurs when M = 2§ for N = 7000
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A Non-Linear Sampling Theorem

a0 Exact Recovery Theorem (Candes, R, Tao, 2004):

= Select M sample locations {7 } “at random” with

M > Const-Slog N
0 Take time-domain samples (measurements)

Ym = Zo(tm)

a Solve

rr}Ein |Z|le, subjectto z(tm) =ym, m=1,...,.M

0 Solution is exactly recovered signal with extremely

high probability

Penn ESE 531 Spring 2019 - Khanna 33



A Non-Linear Sampling Theorem

a0 Exact Recovery Theorem (Candes, R, Tao, 2004):

= Select M sample locations {7 } “at random” with

M > Const - Slog N
0 Take time-domain samples (measurements)
Ym = Z0(tm)

a Solve

min |Z|le, subjectto z(tm) =ym, m=1,...,.M

0 Solution is exactly recovered signal with extremely
high probability
M > C- u?(P,¥)Slog N
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Power (uW)

Power (uW)

Biometric -

“xample:
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Parkinson’s Tremors
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0 6 Subjects of real tremor
data

= collected using low intensity
velocity-transducing laser
recording aimed at reflective
tape attached to the subjects’
tinger recording the finger
velocity

s All show Parkinson’s tremor

in the 4-6 Hz range.

= Subject 8 shows activity at
two higher frequencies

= Subject 4 appears to have two
tremors very close to each
other in frequency
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Real Data

Compressive Sampling

Recovered Frequency Spectrum: Subject 8

Recowvered Frequency Spectrum: Subject | Time Signal: Subject 8

Time Signal: Subject B
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: Biometric Example: Parkinson’s

Tremors
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Biometric Example: Parkinson’s Tremors

Frequency error in tremor detection

Subject Number

Tremors detected
within 100 mHz

randomly sample
20% of the
Nyquist required
samples

Requires post processing to randomly sample!
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Implementing Compressive Sampling

a0 Devised a way to randomly sample 20% of the Nyquist
required samples and still detect the tremor frequencies
within 100mHz

= Requires post processing to randomly sample!

a0 Implement hardware on chip to “choose” samples in real
time
= Only write to memory the “chosen” samples
= Design random-like sequence generator
= Only convert the “chosen” samples

= Design low energy ADC
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CS Theory

Why does is work?

L) L]
#Penn,
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Sampling

e Signal x is K-sparse in basis/dictionary I
- WLOG assume sparse in space domain YV =]

e Sampling
b =]

N x 1

sparse
signal

N x 1

measurements

K

nonzero
entries

T TTTTE T
EEE EEEEE EEYEEERS

Penn ESE 531 Spring 2019 - Khanna

41



Compressive Sampling

e When data is sparse/compressible, can directly
acquire a condensed representation with
no/little information loss through

linear dimensionality reduction y = Px
Y P X

M x 1 — H Nx1
measurements - Sparse
| signal
M x N B K

H nonzero

K< MKN u entries
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How Can It Work?

e Projection ¢

Y b
not full rank... i — -
M <N

... and so
loses information in general

e Ex: Infinitely many &’ s map to the same Yy
(null space)

Penn ESE 531 Spring 2019 - Khanna
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How Can It Work?

e Projection
not full rank...

M <N

... and so K columns
loses information in general

X

e But we are only interested in sparse vectors

Penn ESE 531 Spring 2019 - Khanna
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How Can It Work?

e Projection ¢
not full rank...

D
EI
M < N

... and so K columns
loses information in general

e But we are only interested in sparse vectors

e @ is effectively MxK
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How Can It Work?

e Projection P
not full rank...

M <N

... and so K columns
loses information in general

e But we are only interested in sparse vectors

e Design @ so that each of its MxK submatrices
are full rank (ideally close to orthobasis)

- Restricted Isometry Property (RIP)

Penn ESE 531 Spring 2019 - Khanna
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: RIP

e Draw @ at random
- iid Gaussian
- iid Bernoulli £1

K columns

e Then @ has the RIP with high probability

provided
M = O(Klog(N/K)) < N
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CS Signal Recovery

D

Y
e Goal: Recover signal & '.'ﬁ
from measurements Y ! = " . : I
m

=w

e Problem: Random
projection ¢ not full rank
(ill-posed inverse problem)

e Solution: Exploit the sparse/compressible
geometry of acquired signal &

Penn ESE 531 Spring 2019 - Khanna
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CS Signal Recovery

e Random projection P
not full rank

<
©

e Recovery problem:
given y = Pz
find x

EEE EEEEECEESEEERS

e Null space

e Search in null space
for the “best” &
according to some
criterion

- ex: least squares

{2/ y= Pz’
(N-M)-dim hyperplane
at random angle

Penn ESE 531 Spring 2019 - Khanna
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L, Signal Recovery

e Recovery: given y = Pz
(ill-posed inverse problem) find X (sparse)
e Optimization: T = arg mip |z ||2
=odx

e Closed-form solution: T

(CDT(D)_leTy

e Wrong answer! RN
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L, Signal Recovery

e Recovery:
(ill-posed inverse problem)

e Optimization:
e Correct!
- -,

)

e But NP-Complete alg

Penn ESE 531 Spring 2019 - Khanna

given y = Px
find x (sparse)

r = arg min ||z||o

y=>x

“find sparsest vector
in translated nullspace”

RN

51



L, Signal Recovery

e Recovery: given y = Px
(ill-posed inverse problem) find X (sparse)
e Optimization: T = arg min ||z||1
y=>x

e Convexify the ﬁo optimization
e Correct!

e Polynomial time alg
(linear programming)

e Much recent alg progress
- greedy, Bayesian approaches, ...
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Universality

e Random measurements can be used for signals
sparse in any basis

r = WV

&

Ill.llll.l.lllQ
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Universality

e Random measurements can be used for signals
sparse in any basis

y = bxr = PV«

Ill.llll.l.lllQ
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Universality

e Random measurements can be used for signals
sparse in any basis

y:CDaj:CD\UOé:CD/CE

-§
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N x 1

sparse
coefficient
vector

K

nonzero
entries

Ill.llll.l.lllQ
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Reference Slide
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Big Ideas

0 Compressive Sampling
= Integrated sensing/sampling, compression and processing

= Based on sparsity and incoherency
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Admin

d

d

Final Project due - Apr 3(th

= TA advice — “The report takes time. Leave time for it.”

= No late accepted. Turn into Canvas on time.

Last day of TA office hours — Apr 30™

= Piazza still available
Last day of Tania office hours - May 8%
Final Exam Review Session = May 10 (time TBD)

s Watch Piazza for details

Final Exam - May 13%
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Final Exam Admin

0 Final — 5/13
= [ocation Levine 101
= Starts at exactly 3:00pm, ends at exactly 5:00pm (120 minutes)

s Cumulative — covers entire course

= Except data converters, noise shaping (lec 12), adaptive filters (lec 23),
wavelet transform (lec 25), and compressive sampling (lec 20)

= Closed book
= Data/Equation sheet provided by me

s 2 8.5x11 two-sided cheat sheets allowed

= Calculators allowed, no smart phones
= Old exams posted
= TA Review session on 5/10, Time and Place TBD

s  Watch Piazza for details

Penn ESE 570 Spring 2019 — Khanna
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