

LTI Systems

A system
$$\mathcal{H}$$
 is linear time-invariant (LTI) if it is both linear and time-invariant

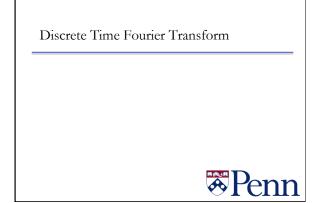
LTI system can be completely characterized by its impulse response

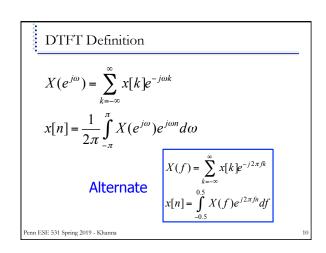
 $\delta \longrightarrow \mathcal{H} \longrightarrow h$

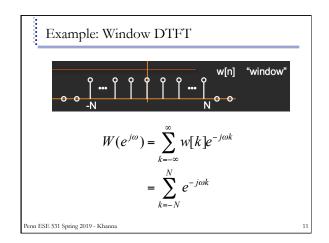
Then the output for an arbitrary input is a sum of weighted, delay impulse responses

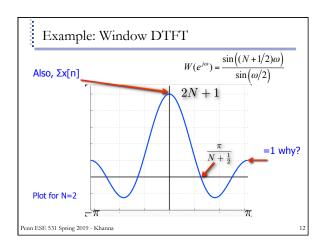
 $x \longrightarrow h \longrightarrow y \qquad y[n] = \sum_{m=-\infty}^{\infty} h[n-m] x[m]$
 $y[n] = x[n] * h[n]$

Penn ESE 531 Spring 2019 - Khanna









LTI System Frequency Response

□ Fourier Transform of impulse response

$$x[n]=e^{j\omega n} \longrightarrow LTI System \longrightarrow y[n]=H(e^{j\omega n})e^{j\omega n}$$

$$H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} h[k]e^{-j\omega k}$$

Penn ESE 531 Spring 2019 - Khanna

z-Transform

- □ The z-transform generalizes the Discrete-Time Fourier Transform (DTFT) for analyzing infinitelength signals and systems
- Very useful for designing and analyzing signal processing systems
- Properties are very similar to the DTFT with a few caveats

$$H(z) = \sum_{n=-\infty}^{\infty} h[n]z^{-n}$$

Penn ESE 531 Spring 2019 - Khanna

Region of Convergence (ROC)

Given a time signal x[n], the **region of convergence** (ROC) of its z-transform X(z) is the set of $z\in\mathbb{C}$ such that X(z) converges, that is, the set of $z\in\mathbb{C}$ such that x[n] z^{-n} is absolutely summable

$$\sum_{n=-\infty}^{\infty} |x[n] \, z^{-n}| \; < \; \infty$$

Penn ESE 531 Spring 2019 - Khanna

Inverse z-Transform

- Ways to avoid it:
 - Inspection (known transforms)
 - Properties of the z-transform
 - Partial fraction expansion

$$X(z) = \frac{b_0}{a_0} \prod_{k=1}^{M} (1 - c_k z^{-1}) = \sum_{k=1}^{N} \frac{A_k}{1 - d_k z^{-1}}$$

Power series expansion

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

 $= \cdots + x[-2]z^{2} + x[-1]z + x[0] + x[1]z^{-1} + x[2]z^{-2} + \cdots$

Difference Equation to z-Transform

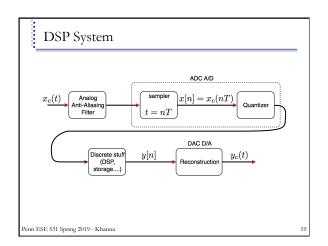
$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{m=0}^{M} b_m x[n-m]$$

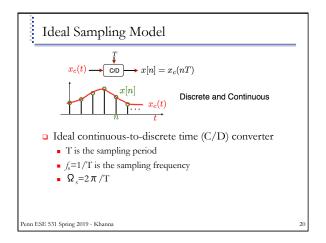
$$H(z) = \frac{\sum_{m=0}^{M} (b_k) z^{-k}}{\sum_{k=0}^{N} (a_k) z^{-k}}$$

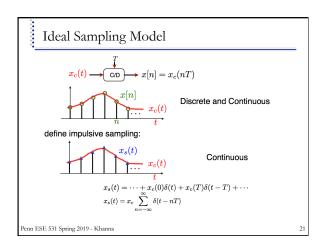
- Difference equations of this form behave as causal LTI systems
 - when the input is zero prior to n=0
 - Initial rest equations are imposed prior to the time when input becomes nonzero
 - i.e y[-N]=y[-N+1]=...=y[-1]=0

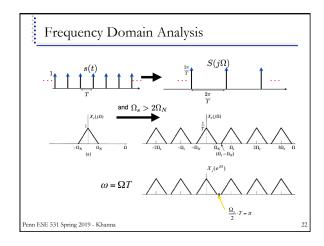
Penn ESE 531 Spring 2019 - Khanna

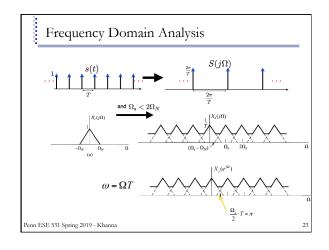
Sampling and Reconstruction

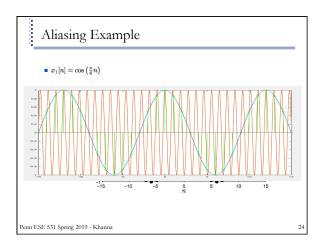










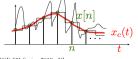


Reconstruction of Bandlimited Signals

f u Nyquist Sampling Theorem: Suppose $x_c(t)$ is bandlimited. I.e.

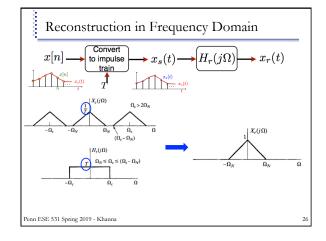
$$X_c(j\Omega) = 0 \ \forall \ |\Omega| \ge \Omega_N$$

- □ If $\Omega_s \ge 2\Omega_N$, then $x_c(t)$ can be uniquely determined from its samples $x[n] = x_c(nT)$
- □ Bandlimitedness is the key to uniqueness

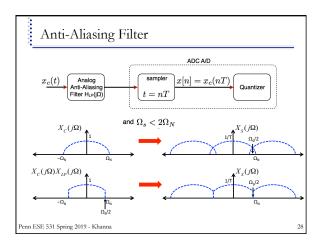


Mulitiple signals go through the samples, but only one is bandlimited within our sampling band

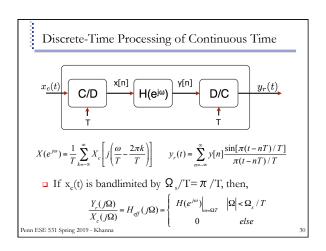
Penn ESE 531 Spring 2019 - Khann:

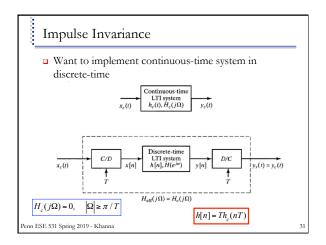


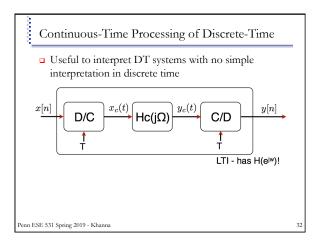
Reconstruction in Time Domain $x_r(t) = x_s(t) * h_r(t) = \left(\sum_n x[n]\delta(t-nT)\right) * h_r(t)$ $= \sum_n x[n]h_r(t-nT)$ $= \sum_n x[n]h_r(t-nT)$ The sum of "sincs" gives $x_r(t) \Rightarrow$ unique signal that is bandlimited by sampling bandwidth

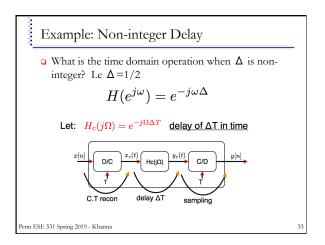


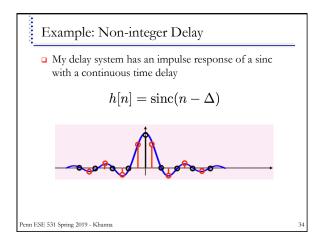
DT and CT processing

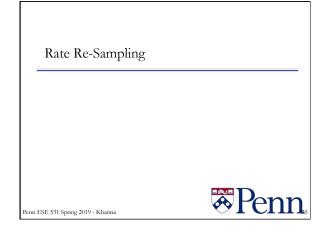


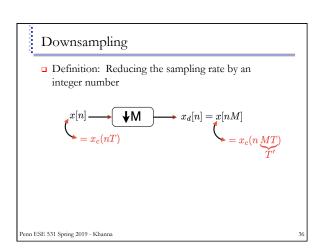


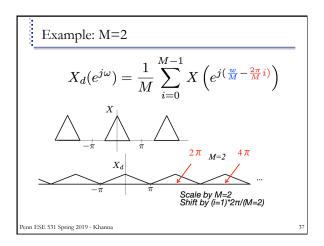


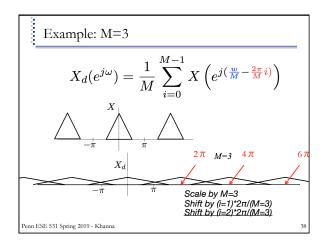


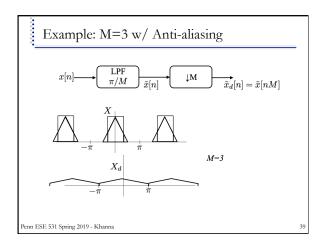


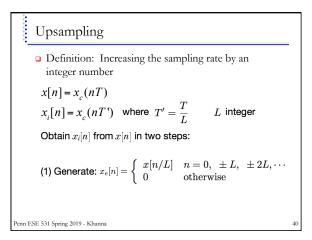


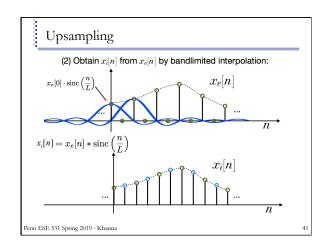


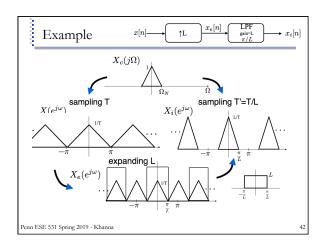


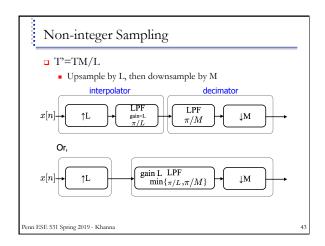


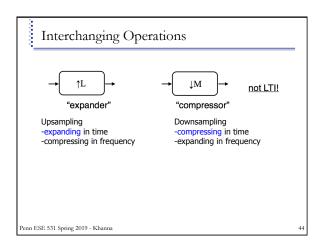


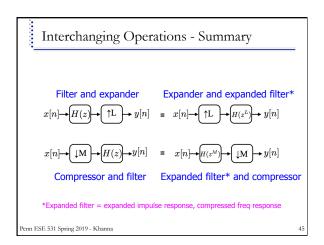


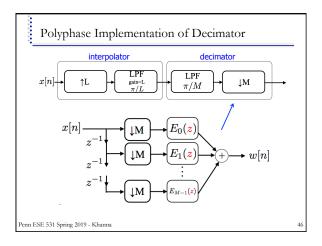


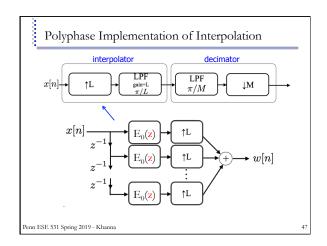


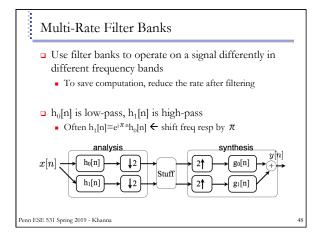


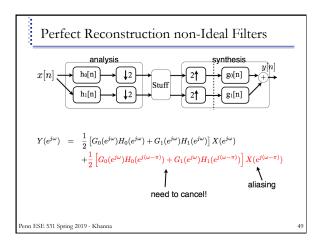


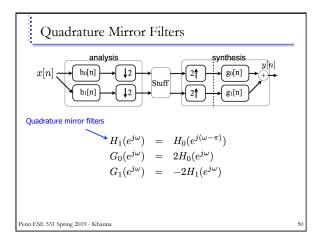












Frequency Response of Systems

Penn

Frequency Response of LTI System

$$Y(e^{j\omega}) = H(e^{j\omega})X(e^{j\omega})$$

□ We can define a magnitude response

$$|Y(e^{j\omega})| = |H(e^{j\omega})||X(e^{j\omega})|$$

□ And a phase response

$$\angle Y(e^{j\omega}) = \angle H(e^{j\omega}) + \angle X(e^{j\omega})$$

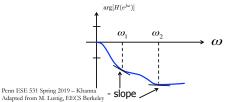
Penn ESE 531 Spring 2019 – Khanna Adapted from M. Lustig, EECS Berkeley

Group Delay

Penn ESE 531 Spring 2019 - Khanna

 General phase response at a given frequency can be characterized with group delay, which is related to phase

$$\operatorname{grd}[H(e^{j\omega})] = -\frac{d}{d\omega} \{ \operatorname{arg}[H(e^{j\omega})] \}$$



LTI System

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$

Example: y[n] = x[n] + 0.1y[n-1]

Stable and causal f all poles inside unit circle

$$H(z) = \frac{b_0 + b_1 z^{-1} + \ldots + b_M z^{-M}}{a_0 + a_1 z^{-1} + \ldots + a_N z^{-N}} = \frac{b_0}{a_0} \frac{\prod_{k=1}^M (1 - c_k z^{-1})}{\prod_{k=1}^N (1 - d_k z^{-1})}$$

- □ Transfer function is not unique without ROC
 - If diff. eq represents LTI and causal system, ROC is region outside all singularities
 - If diff. eq represents LTI and stable system, ROC includes unit circle in z-plane

General All-Pass Filter

d_k=real pole, e_k=complex poles paired w/ conjugate, e_k*

$$H_{\mathrm{ap}}(z) = A \prod_{k=1}^{M_r} \frac{z^{-1} - d_k}{1 - d_k z^{-1}} \prod_{k=1}^{M_c} \frac{(z^{-1} - e_k^*)(z^{-1} - e_k)}{(1 - e_k z^{-1})(1 - e_k^* z^{-1})}$$

Penn ESE 531 Spring 2019 - Khanna

Minimum-Phase Systems Definition: A stable and causal system H(z) (i.e. poles inside unit circle) whose inverse 1/H(z) is also stable and causal (i.e. zeros inside unit circle) All poles and zeros inside unit circle 1/H(z) Yenn ESE 531 Spring 2019 - Khanna

Min-Phase Decomposition Purpose

□ Have some distortion that we want to compensate for: G(z)

 $\begin{array}{c|c} G(z) \\ \hline & Distorting \\ s_I[n] & H_d(z) \\ \hline \\ & H_d(z) \\ \hline \end{array} \begin{array}{c|c} Compensating \\ system \\ H_c(z) \\ \hline \\ & S_c[n] \\ \hline \end{array}$

- \Box If $H_d(z)$ is min phase, easy:
 - $H_c(z)=1/H_d(z)$ \leftarrow also stable and causal
- \Box Else, decompose $H_d(z)=H_{d,min}(z) H_{d,ap}(z)$
 - $H_c(z)=1/H_{d,min}(z) \rightarrow H_d(z)H_c(z)=H_{d,ap}(z)$
 - Compensate for magnitude distortion

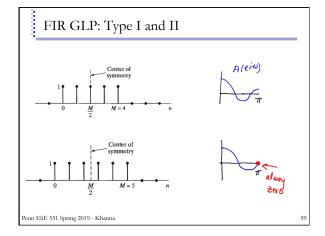
Penn ESE 531 Spring 2019 - Khanna

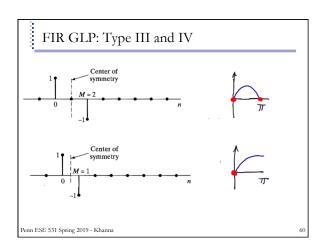
Generalized Linear Phase

□ An LTI system has generalized linear phase if frequency response $H(e^{j\omega})$ can be expressed as:

$$H(e^{j\omega}) = A(\omega)e^{-j\omega\alpha+j\beta}, \ |\omega| < \pi$$

- f u What is the group delay?





Zeros of GLP System

□ FIR GLP System Function

$$H(z) = \sum_{n=0}^{M} h[n] z^{-n}$$

Real system \rightarrow zeros occur in conjugate-reciprocal groups of 4

$$(1-re^{j\theta}z^{-1})(1-re^{-j\theta}z^{-1})(1-r^{-1}e^{j\theta}z^{-1})(1-r^{-1}e^{-j\theta}z^{-1})$$

☐ If zero is on unit circle (r=1)

$$(1-e^{j\theta}z^{-1})(1-e^{-j\theta}z^{-1}).$$

 \Box If zero is real and not on unit circle ($\theta = 0$)

$$(1 \pm rz^{-1})(1 \pm r^{-1}z^{-1}).$$

Penn ESE 531 Spring 2019 - Khanna

FIR Filter Design

FIR Design by Windowing

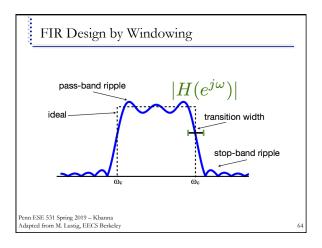
 \Box Given desired frequency response, $H_d(e^{j\omega})$, find an impulse response

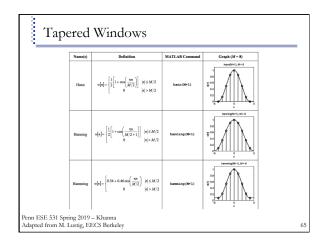
$$h_d[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(\underbrace{e^{j\omega})} e^{j\omega n} d\omega \hspace{0.2in} \xrightarrow{\hspace{0.2in} \text{ideal}}$$

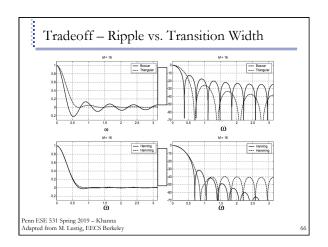
Obtain the Mth order causal FIR filter by truncating/windowing it

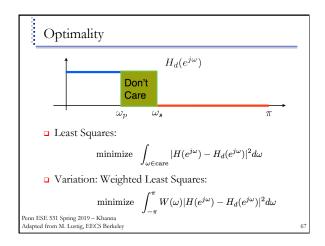
$$h[n] = \left\{ \begin{array}{ll} h_d[n]w[n] & 0 \leq n \leq M \\ 0 & \text{otherwise} \end{array} \right\}$$

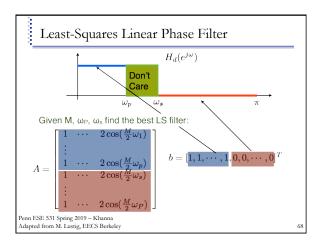
Penn ESE 531 Spring 2019 – Khanna Adapted from M. Lustig, EECS Berkeley











Min-Max Ripple Design

Recall, $\tilde{H}(e^{j\omega})$ is symmetric and real
Given ω_p , ω_s , M, find δ , \tilde{h}_+ $\frac{1+\delta}{1-\delta}$ minimize δ Subject to: $1-\delta \leq \tilde{H}(e^{j\omega_k}) \leq 1+\delta \quad 0 \leq \omega_k \leq \omega_p$ $-\delta \leq \tilde{H}(e^{j\omega_k}) \leq \delta \quad \omega_s \leq \omega_k \leq \pi$ $\delta > 0$ Formulation is a linear program with solution δ , \tilde{h}_+ A well studied class of problems

Penn ESE 531 Spring 2019 – Khanna
Adapted from M. Lustig, EECS Berkeley

IIR Filter Design

IIR Filter Design
 □ Transform continuous-time filter into a discrete-time filter meeting specs
 ■ Pick suitable transformation from s (Laplace variable) to z (or t to n)
 ■ Pick suitable analog H_s(s) allowing specs to be met, transform to H(z)
 □ We've seen this before... impulse invariance

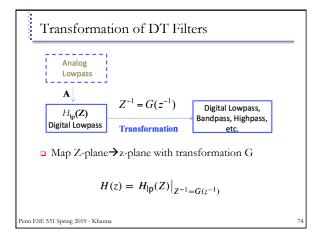
Bilinear Transformation

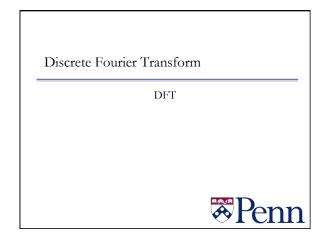
 \Box The technique uses an algebraic transformation between the variables s and z that maps the entire j Ω -axis in the s-plane to one revolution of the unit circle in the z-plane.

$$s = \frac{2}{T_d} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right);$$

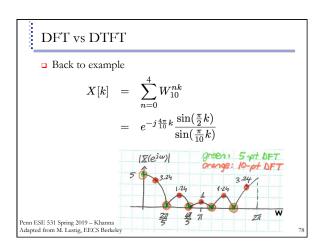
$$H(z) = H_c \left(\frac{2}{T_d} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right) \right).$$

Penn ESE 531 Spring 2019 - Khanna





Discrete Fourier Transform $x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] W_N^{-kn} \quad \text{Inverse DFT, synthesis}$ $X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn} \quad \text{DFT, analysis}$ It is understood that, $x[n] = 0 \quad \text{outside } 0 \leq n \leq N-1$ $X[k] = 0 \quad \text{outside } 0 \leq k \leq N-1$ Penn ESE 531 Spring 2019 – Khanna Adapted from M. Lastig, EECS Berkeley



Circular Convolution • For $\mathbf{x}_1[n]$ and $\mathbf{x}_2[n]$ with length N $x_1[n] \ \textcircled{N} \ x_2[n] \leftrightarrow X_1[k] \cdot X_2[k]$ • Very useful!! (for linear convolutions with DFT)

Linear Convolution via Circular Convolution

□ Zero-pad x[n] by P-1 zeros

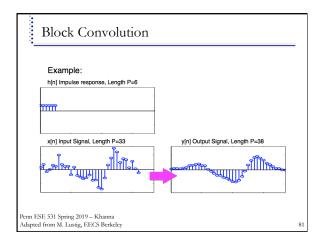
$$x_{\mathrm{zp}}[n] = \left\{ \begin{array}{ll} x[n] & 0 \leq n \leq L-1 \\ 0 & L \leq n \leq L+P-2 \end{array} \right.$$

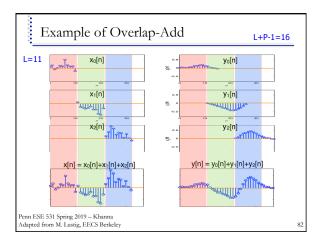
Zero-pad h[n] by L-1 zeros

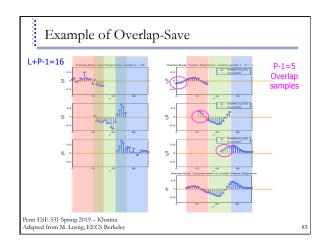
$$h_{\mathrm{zp}}[n] = \left\{ \begin{array}{ll} h[n] & 0 \leq n \leq P-1 \\ 0 & P \leq n \leq L+P-2 \end{array} \right.$$

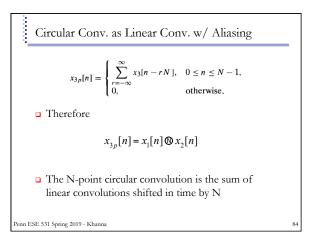
□ Now, both sequences are length M=L+P-1

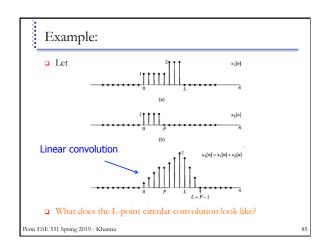
Penn ESE 531 Spring 2019 – Khanna Adapted from M. Lustig, EECS Berkeley

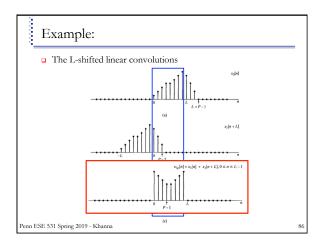


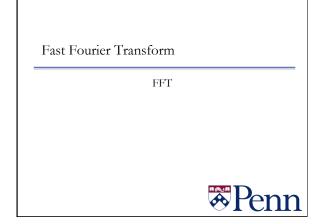


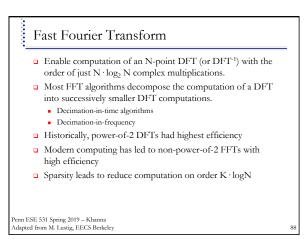


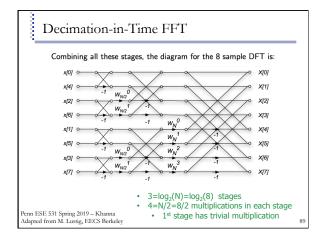


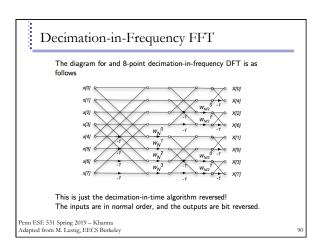




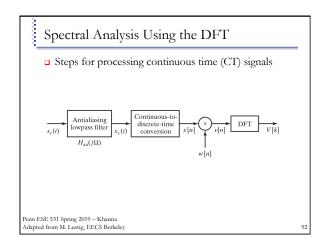








Spectral Analysis



Spectral Analysis Using the DFT

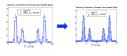
- □ Two important tools:
 - Applying a window → reduced artifacts
 - Zero-padding → increases spectral sampling

Parameter	Symbol	Units
Sampling interval	T	S
Sampling frequency	$\Omega_s = \frac{2\pi}{T}$	rad/s
Window length	L .	unitless
Window duration	$L \cdot T$	s
DFT length	$N \geq L$	unitless
DFT duration	N · T	s
Spectral resolution	$\frac{\Omega_s}{I} = \frac{2\pi}{I \cdot T}$	rad/s
Spectral sampling interval	$\frac{\Omega_s}{N} = \frac{2\pi}{N \cdot T}$	rad/s

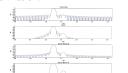
Penn ESE 531 Spring 2019 – Khanna Adapted from M. Lustig, EECS Berkeley

Frequency Analysis with DFT

- □ Length of window determines spectral resolution
- □ Type of window determines side-lobe amplitude/ main-lobe width
 - Some windows have better tradeoff between resolution and side-lobe height
- Zero-padding approximates the DTFT better. Does not introduce new information!



Penn ESE 531 Spring 2019 - Khanna

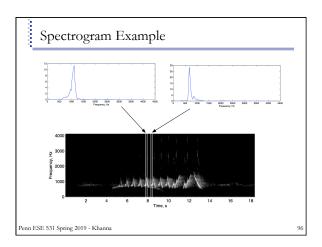


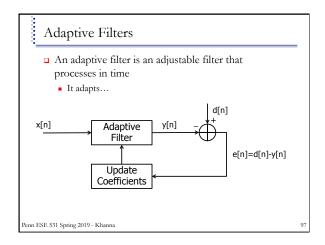
Time Dependent Fourier Transform

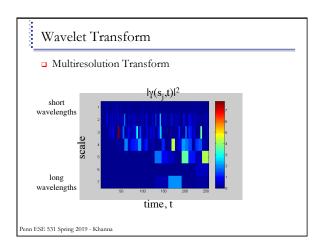
- □ Also called short-time Fourier transform
- □ To get temporal information, use part of the signal around every time point

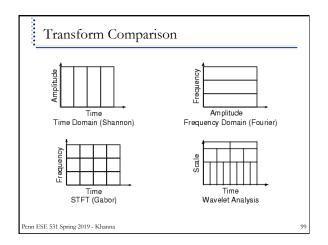
$$X[n,\lambda) = \sum_{m=-\infty}^{\infty} x[n+m]w[m]e^{-j\lambda m}$$

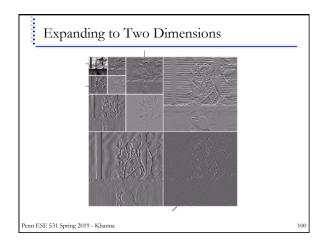
- □ Mapping from 1D \rightarrow 2D, n discrete, λ cont.
- □ Simply slide a window and compute DTFT

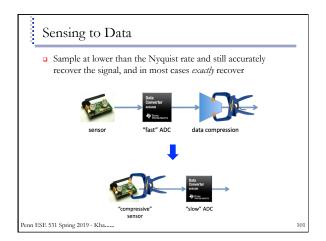


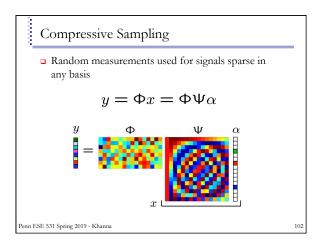












Final Project

- □ Due today @midnight Project must be submitted into Canvas
 - No late projects accepted

Penn ESE 570 Spring 2019 - Khanna

Admin

- □ Final Project due Apr 30th
 - No late accepted. Turn into Canvas on time.
- □ Last day of TA office hours Apr 30th
 - Piazza still available
- □ Last day of Tania office hours May 8th
- □ Final Exam Review Session May 10th (time TBD)
 - Watch Piazza for details
- □ Final Exam May 13th

Final Exam Admin

- □ Final 5/13
 - Location Levine 101
 - Starts at exactly 3:00pm, ends at exactly 5:00pm (120 minutes)
 - Cumulative covers entire course
 - Except data converters, noise shaping (lec 12), adaptive filters (lec 23), wavelet transform (lec 25), and compressive sampling (lec 26)
 - Closed book
 - Data/Equation sheet provided by me
 - 2 8.5x11 two-sided cheat sheets allowed
 - Calculators allowed, no smart phones
 - Old exams posted
 - TA Review session on 5/10, Time and Place TBD
 - Watch Piazza for details