ESE 531: Digital Signal Processing

Lec 2: January 22, 2019

Discrete Time Signals and Systems

cnn

Penn ESE 531 Spring 2019 - Khanna

Discrete Time Signals
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Lecture Outline

oelsiese’s

0 Discrete Time Signals
o Signal Properties

o Discrete Time Systems

Signals are Functions

A signal is a function that maps an independent variable to a dependent variable.

0 Signal x[n]: each value of n produces the value x[n]

0 In this course we will focus on discrete-time signals:
= Independent variable is an integer: 7 € Z  (will refer to n as time)
= Dependent variable is a real or complex number: x[1] € R

-101234567
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: .
¢ Signals
.
.
z
= Signal (n): A detectable physical quantity ...by which messages or information
il can be transmitted (Merriam-Webster)
g
0 Signals carry information
0 Examples:
= Speech signals transmit language via acoustic waves
= Radar signals transmit the position and velocity of targets via electromagnetic
waves
= Electrophysiology signals transmit information about processes inside the
body
= Financial signals transmit information about events in the economy
0 Signal processing systems manipulate the information cartied by signals
Penn ESE 531 Spring 2019 - Khanna 4
3 . .
¢ A Menagerie of Signals
.
0 Google Share daily share price for 5 months
2 Y p
& 500
=
o
o0 50 100 150
n
0 Temperature at Houston International Airport in 2013
0
s
% s 0 150 L0 0 w0 3
0 Excerpt from a reading of Shakespeare’s Hanlet
04
= o2
5 o
02
0 100 2000 3000 4000 5000 8000 7000
n
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oelsiese’s

Plotting Signals Correctly

o

In a discrete-time signal x[#], the independent variable n is discrete

o

To plot a discrete-time signal in a program like Matlab, you should use
the stem or similar command and not the plot command

Unit Sample

oelsiese’s

1 n=0

The delta function (aka unit impulse)  §[n] = {0 herwi
otherwise

DEFINITION

- -10 -5 0 5 10 15
n

0 The shifted delta function 8[n-m] peaks up at n=m;here m=9

ol
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o Correct: (]
z[n
s =T 5 0 5 10 15
n
o Incorrect:
1
=
s
:‘(5 -10 -5 0 5 10 15
n
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¢ Unit Step
.
.
& 1 n>0
=l The unit step  ufn] = 0 neo
& n<
1
=
E: "% g1 5 10 15

0
n

0 The shifted unit step u[n-m] jumps from 0 to 1 at n=m ;here m=9

I

=10 -5 0

Unit Pulse

seseees

0 n<N;
The unit pulse (aka boxcar) pln]=4{1 N, <n <N,
0 n>N,

DEFINITION

a Ex: pln] for Ny=-5 and N, =3

=f

15 10 -5 0 H 10 15
n

0 One of many different formulas for the unit pulse
p[n] = uln — Ni] —ufn — (N2 +1)]

Penn ESE 531 Spring 2019 - Khanna
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: Real Exponential
3
(| The real exponential r[n]=a", a€R, a 20
0 For a>1, r[n] shrinks to the left and grows to the right; here a=1.1
4
£.
I........nnnn??TTTTTTHHH
-15 -10 -5 0 5 10 15
n
o For 0<a<l, r[n] grows to the left and shrinks to the right; here a=0.9
P]S -10 -5 0 5 10 15
n
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Sinusoids

eelsieeels

o There are two natural real-value sinusoids:  cos(wn+¢) and sin(wn +¢)
o Frequency: o (units: radians/sample)
0 Phase: ¢ (units: radians)

cown]

sinfwn]

ety 21110 o17
) NS RIS

-1
15 10 =5 0 B 10 15
n
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Sinusoid Examples

o it AT

o sin(0n) %
.[7[ Zn) ;P_TJMHTLU_L._H,‘_LLLLTH
o sin|=n+=
40 T S
JLITTTTIITIrIII LY
o cos(mwn)

n
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Complex Sinusoid

o

The complex-value sinusoid combines both the cos and sin terms using
Euler’s identity:

&/“1+9) = cos(wn + ¢) + jsin(wn + ¢)

Re(e“") = coswn)

ST et gt

Leion=un ) Tm(e7") = sin(wn)
ngumﬂmj ARSI A S SUOR 4 SO 01
SIS : DA 3 M P S 31

H E 0 ° 5 0
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¢ Negative Frequency?
.
.
0 Negative frequency is nothing to be afraid of!
Penn ESE 531 Spring 2019 - Khanna 17

¢ Sinusoid in Matlab
o It easy to play around in Matlab to get comfortable with the properties
of sinusoids
N=36;
n=0:N-1;
omega=pi/6;
phi=pi/4;
x=cos(omega*n-+phi);
stem(n,x)
I J L T[ ‘T J
ll ll ll P lJ Jl
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¢ Complex Sinusoid as Helix

/@) = cos(wn + ¢) + jsin(wn + @)

e
= A complex sinusoid is a helix in 3D space (Re{},Im{},n)

© Real part (cos term) is the projection onto the Re{} axis
© Imaginary part (sin term) is the projection onto the Im{} axis

m Frequency w determines rotation speed and direction of helix
* w > 0 = anticlockwise rotation
* w < 0= clockwise rotation

Animation: https://upload.wikimedia.org/wikipedia/commons/4/41/Rising_circular.gif
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¢ Negative Frequency
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o Negative frequency is nothing to be afraid of! Consider a sinusoid with a
negative frequency:
eI9n = g=in = cos(—wn)+ jsin(—wn) = cos(wn) — j sin(wn)

a  Also note: ei(-n — g—jwn — (Em()'

o Takeaway: negating the frequency is equivalent to complex conjugating a
complex sinusoid—flips the sign of the imaginary sin term
) Re(e?*™) = cog(wn) Re(e=7%") = cos(wn)
b i hi

e, alr, 1t e, gl alr, 1
L T LN N

Im(e 77 = — sinwn)

i, oy
Bl

Im(e7*™) = sin(wn) )
M, 1t (R AR S AL
MU a3 S EA SP A1

f11, 1t
g




Phase of a Sinusoid

0 ¢ is a (frequency independent) shift that is referenced to one period of
oscillation

cos (En—0) “Fj‘mj*rm’r%’ﬂl‘

T a1l W11, A0
R AL SR

Lot 2111¢ 211
P RN T

B B

cos (5n— 3) =sin (3n)

. i Tetlte 2117¢ 211%e
cos (§n — 2m) = cos (§n) 7 L) I

15 10

Complex Exponentials

o Complex sinusoid e#(@n+9) is of the form ePurely Imaginary Numbers
P € €

0 Generalize to eGeneral Complex Numbers
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Complex Exponentials

0 Complex sinusoid e/(@n+6) is of the form ePurely Imaginary Numbers

0 Generalize to General Complex Numbers

0 Consider the general complex number 2z = |z e/, z € C

o |z| = magnitude of z
* w = /(z), phase angle of z

e Can visualize z € C as a point in the complex plane

0 Now we have

2" = (|2]e?)" [7(e7)™ = |2|reden
o |z|™ is a real exponential (a" with a = |2|)
e €’“" is a complex sinusoid
Penn ESE 531 Spring 2019 - Khanna 22
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Complex Exponentials
o Complex sinusoid f(@n+9) is of the form Purely Imaginary Numbers
0 Generalize to eGeneral Complex Numbers
o Consider the general complex number 2z = |z e/, 2 € C
© |z| = magnitude of z
e w = /(z), phase angle of z
e Can visualize z € C as a point in the complex plane
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¢ Complex Exponentials
.
= () = e
= |2|" is a real exponential envelope (a” with a = |2|)
= ¢/" is a complex sinusoid
lz] <1 2] >1
Re(s"), 2] <1 Re(e"), 2] > 1
1 2ty eee E
Kt Iy - K
R E I Il I
Inzn), |3 <1 T(ar), 5] > 1
e (123 asa 72
=k &[4 v 2|
I W w g e e
Bounded Unbounded
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Digital Signals

.
.
.

» Digital signals are a special sub-class of discrete-time signals

« Independent variable is still an integer: n € Z
* Dependent variable is from a finite set of integers:  z[n] € {0,1,...,D — 1}
« Typically, choose D = 27 and represent each possible level of z[n] as a digital code with g bits

« Ex: Digital signal with ¢ = 2 bits = D = 2 = 4 levels

Sty

5

0
n

* Ex: Compact discs use ¢ = 16 bits = D = 2'° = 65536 levels
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Signal Properties

Penn ESE 531 Spring 2019 - Khanna

Windowing

z[n] Ni<n<N,

m Converts a longer signal into a shorter one y[n] = )
0 otherwise

z[n]
Levesansastt?tt 111111010,

g

Finite/Infinite Length Sequences

oelsiese’s

ite-length discrete-time signal z[n] is defined for all n € Z, i.e., —00 <n < oo

z[n]
‘ Illl
-1
15 —10 5 0 5 10 15
n

= A finite-length discrete-time signal [n] is defined only for a finite range of Ny <n < N

z[n]
‘ IIIl
-
ES ~10 5 0 5 10 15
n

= Important: a finite-length signal is undefined for n < N; and n > N,

Penn ESE 531 Spring 2019 - Khanna
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seseees

Zero Padding

m Converts a shorter signal into a longer one
m Say z[n] is defined for Ny <n < N,

0 No<n<N;
m Given Ny < N; < N, < N3 yln]=<Szn] Ny<n<N,
0 Ny <n < Nz

3o

Penn ESE 531 Spring 2019 - Khanna
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Periodic Signals
3 A discrete-time signal is periodic if it repeats with period N € Z:
E
& zn+mN]=z[n] VmeZ
4
=
“JiﬂlthIﬂlh.ﬂlhln;ﬂlthlﬂlh
Notes: -15 -10 -5 0 5 10 15 20
: n
u The period N must be an integer
m A periodic signal is infinite in length
]
H A discrete-time signal is aperiodic if it is not periodic ‘
a
29
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Periodization

eelsieeels

m Converts a finite-length signal into an infinite-length, periodic signal
m Given finite-length z[n], replicate z[n] periodically with period N

yln] = i zln—mN], neZ

z[n]

Loty

(] 1 2 3 5

n
n
y[n] with period N =

Lﬂh% Bil TTTD?THITT tTﬂTT‘E »Tmh

5 20
n
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= ---+z[n+2N]|+z[n+ N]+z[n]+ z[n — N] +z[n — 2N| +---

30




Causal Signals

oelsiese’s

A signal z[n] is causal if z[n] = 0 for all n < 0.

DEFINITION

1
=
ﬂo%

m A signal z[n] is anti-causal if z[n] =0 for all n. > 0

ITTTTITTTrlfrwwL

n

-10 -5

§°;£m_ym_ﬂma

= A signal z[n] is acausal if it is not causal

Even Signals

oelsiese’s

A real signal z[n] is even if z[—n]

DEFINITION

B

m Even signals are symmetrical around the point n = 0

Penn ESE 531 Spring 2019 - Khanna 31
: Odd Signals
.
E A real signal z[n] is odd if z[—n] = —z[n]
05
= cesssspe?t?l]
s CIITsEEeeeee
e -10 -5 0 5 10 15
n
= Odd signals are anti-symmetrical around the point n =0
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¢ Signal Decomposition
.
= Useful fact: Every signal z[n] can be decomposed into the sum of its even part + its odd part
w Even part:  e[n] = § (z[n] + z[-n]) (easy to verify that e[n] is even)
u Odd part:  ofn] =  (an] — z[~n]) (easy to verify that o[n] is odd)
 Decomposition  z| n] + o[n]
u Verify the decomposition:
1 1
efn] +oln] = 5(a[n] +l-n]) + 5 (aln] - z[-n])
1
= E(I[’IL] + z[-n] + z[n] — z[-n])
= jCala) =aln] v
Penn ESE 531 Spring 2019 - Khanna 35
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¢ Signal Decomposition
m Useful fact: Every signal z[n] can be decomposed into the sum of its even part + its odd part
u Even part:  efn] = } (z[n] + z[-n]) (easy to verify that e[n] s even)
= Odd part:  ofn] = 1 (z[n] — a[-n]) (easy to verify that ofn] is odd)
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: Decomposition Example
1
o 2T
8
‘.,?TTTT
-15 -10 -5 0 5 10 15
n
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Decomposition Example
X[n] %"{.,anTTHHHNHHHHUHH
oo (I 12
Decomposition Example
el Xenl ek

(eI ) S

N
=o[n]

(g - ) et
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¢ Decomposition Example

X[n] X[-n]

z(n] zl—n]

< z([n z[—n]
1 -
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¢ Decomposition Example

X[n] X[-n]
%<i ott]] HHHHHHHH

—ef-n]
e R

N
=o[-n]
oln)

(LI - ) -

X[n]

z[n]
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¢ Discrete-Time Sinusoids

m Discrete-time sinusoids €7(“"+%) have two counterintuitive properties

m Both involve the frequency w

m Weird property #1: Aliasing

m Weird property #2: Aperiodicity

Penn ESE 531 Spring 2019 - Khanna
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Property #1: Aliasing of Sinusoids

= Consider two sinusoids with two different frequencies

cw = mn =@t

cwtr = zyn] = HTIRnTe)

= But note that

za[n] = I (wH2mInte) _ gilwnté)ti2an _ gi(wntd) gi2nn _ gilwn+e) — z1[n]
m The signals z; and z, have different frequencies but are identical!
m We say that z; and x; are aliases; this phenomenon is called aliasing

u Note: Any integer multiple of 27 will do; try with z3[n] = e/(w2rm)n+d) m e 7,
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Aliasing Example

= 2, [n] = cos (%n)

ittt et

-15 -10 -5

m 25[n] = cos (£%n) = cos ((% + 2m)n)

Penn ESE 531 Spring 2019 - Khanna
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: Alias-Free Frequencies

= Since

Z3fn] = @ HEMINTG) = oiwntd) = 3.(n] VmeZ

the only frequencies that lead to unique (distinct) sinusoids lie in an interval of length 2m

=m Two intervals are typically used in the signal processing
literature (and in this course)

e 0<w<2m

o w<w<m

Penn ESE 531 Spring 2019 - Khanna
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Aliasing Example

= 2;[n] = cos (%n)

. T TN LT m\‘“\‘/'h"
““‘ﬁ | ‘H‘ \‘ H I Il ‘\ ‘H‘ ‘H ‘\ i1 i
°°“M1\‘wa | [f U I |

/\ , i I \H\““‘ \ "
M N
:‘\H‘\H“\H\\‘ 1 “‘J//HHH\““\M‘\‘ w l‘\“\‘ ‘M:
;:““.,‘uw\“ \w‘\“\‘d u\MH‘W\‘HMH‘M‘HH“HJ‘:

o
s b

¢

[

-
-15 -10 -5 5 10 15

0
n
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Which is higher in frequency?

a cos(7n) or cos(37 /2n) ?
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Low and High Frequencies

ilwnte)

= Low frequencies: w close to 0 or 27 rad
Ex: cos (75n,

= High frequencies: w close to w or —7 rad

Ex: cos (§5n)
JrTle o110, 1171
S A ST U BRI S Y B

15
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¢ Increasing Frequency
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oelsiese’s

Decreasing Frequency

T 4
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Property #2: Periodicity of Sinusoids

oelsiese’s

= Consider z;[n] = e7“"+9) with frequency w = 22&, k, N € Z (harmonic frequency

seseees

Property #2: Periodicity of Sinusoids

= Consider z[n] = e/(“n+9) with frequency w = 2%, &, N € Z (harmonic frequency)

m It is easy to show that z, is periodic with period N, since

21 + N = @ HN+9) — I (wn+wN+6) _ gi(wn+9) gi(WN) _ gilwn+e) oi(2AN) _ 2] v

= Ex: [n] = cos(%in), N =16

RO SN & DT F XN & AU A DT
[ERENES LS T S Y ) LN 0

s S E 0 5 10 15
n
u Note: z; is periodic with the (smaller) period of 4 when 4 is an integer
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eelsieeels

Aperiodicity of Sinusoids

= Consider z5[n] = &/“"+%) with frequency w # 235, k, N € Z (not harmonic frequency)

= Is 2, periodic?

Zoln + N] = @HNIT6) = gilwntuN+9) _ ¢iwnt6) gi@N) £ 5 (n] NOI
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¢ Aperiodicity of Sinusoids
.
m Consider z3[n] = &9« +9) with frequency w # %, k, N € Z (not harmonic frequency]
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¢ Aperiodicity of Sinusoids
.
= Consider z,[n] = €7“"+%) with frequency w # 225, k, N € Z (not harmonic frequency)
u Is z, periodic?
Za[n + N] = f@n+N)+9) — gilwntwN+0) = gilwn+6) ¢i@N) 2 41[n] NO!
® Ex: 3[n] = cos(1.16 )
1
l on .TT_ YTY _TT. TT. .
B VY G S ) O L ¥
-15 -10 -5 o 5 10 15
n
= If its frequency w is not harmonic, then a sinusoid oscillates but is not periodic!
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Harmonic Sinusoids

oelsiese’s

Hlontd)

m Semi-amazing fact: The only periodic discrete-time sinusoids are those with
harmonic frequencies

2k
== kNez
w=" kNe

m Which means that

* Most discrete-time sinusoids are not periodic!

o The harmonic sinusoids are somehow magical (they play a starring role later in the DFT)
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Periodic or not?

oelsiese’s

a cos(5/7 Tt n)

a cos(7 /5n)

a What are N and k? (I.e How many samples is one

period?
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Periodic or not?

seseees

a cos(5/7 T n)

= N=14, k=5

= cos(5/14*2 7 n)

= Repeats every N=14 samples
0 cos( 7 /5n)

= N=10, k=1

= cos(1/10%2 7T n)

= Repeats every N=10 samples
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Periodic or not?

seseees

a cos(5/7 Tt n)

= N=14, k=5

= cos(5/14*2 T n)

= Repeats every N=14 samples
a cos(7 /5n)

= N=10, k=1

= cos(1/10%2 T n)

= Repeats every N=10 samples

a cos(5/7 Tt n)+cos(7 /5n) ?
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eelsieeels

Periodic or not?

a cos(5/7 Tt n)+cos(7 /5n) ?
= N=SCM{10,14}=70
= cos(5/7* Tt n)+cos( 7T /5n)
= n=N=70>cos(5/7*70 T )+cos( T /5+70)=cos(25%2 T )+cos(7<2 7T )
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Discrete-Time Systems
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Discrete Time Systems

A discrete-time system 7 is a transformation (a rule or formula) that maps a
discrete-time input signal z into a discrete-time output signal y

y="H{z}

DEFINITION

m Systems manipulate the information in signals

u Examples:
« A speech recognition system converts acoustic waves of speech into text
« A radar system transforms the received radar pulse to estimate the position and velocity of targets
o A functional magnetic resonance imaging (fMRI) system transforms measurements of electron spin
into voxel-by-voxel estimates of brain activity
A 30 day moving average smooths out the day-to-day variability in a stock price

Penn ESE 531 Spring 2019 - Khanna
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oelsiese’s

Signal Length and Systems

Lo
m Recall that there are two kinds of signals: infinite-length and finite-length

m Accordingly, we will consider two kinds of systems:

B Systems that transform an infinite-length-signal & into an infinite-length signal y

Bl Systems that transform a length-N signal  into a length-N signal y

(Such systems can also be used to process periodic signals with period N)

= For generality, we will assume that the input and output signals are complex valued

seseees

System Examples

u |dentity
y[n] =z[n] Vn

m Scaling
y[n] =2z[n] Vn
u Offset
y[n] =z[n]+2 Vn
m Square signal
yln) = (z[n)* Vo
= Shift
yln]=z[n+2] Vn
m Decimate
y[n] =z[2n] Vn

m Square time

[n? Vn

y[n

Penn ESE 531 Spring 2019 - Khanna
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System Properties

Memoryless

Linearity

=]
=]
o Time Invariance
o Causality

=]

BIBO Stability

Penn ESE 531 Spring 2019 - Khanna
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¢ System Examples
z[n]
:
doonnnasrertt11ITTIII,
T U
W s s CanasH
= Shift system (m € Z fixed)
vin) =aln—m] Vn
= Moving average (combines shift, sum, scale)
vl = 3l 42l — 1) Vn
u Recursive average
vln) =afn] +ayln—1] Va
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: Memoryless
a y[n] depends only on x|n]
o Examples:
0 Ideal delay system (or shift system):
= y[n]=x[n-m] memoryless?
0 Square system:
= y[n]=(x[n])> memoryless?
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Linear Systems

A system 7 is (zero-state) linear if it satisfies the following two properties:
Scaling
H{az} =aH{z} YaeC

B Additivity

ay

DEFINITION

If yy =H{z:} and y, = H{zs} then
H{zr+ 2} =pi+p

T1+ T2

Proving Linearity

oelsiese’s

m A system that is not linear is called nonlinear

= To prove that a system is linear, you must prove rigorously that it has both the scaling and
additivity properties for arbitrary input signals

= To prove that a system is nonlinear, it is sufficient to exhibit a counterexample
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Linearity Example: Moving Average

seseees

z[n] yin) = Yeln] + 3l — 1))

m Scaling: (Strategy to prove — Scale input = by a € C, compute output y via the formula at top,
and verify that it is scaled as well)

® Let
2'[n] = azln], a€C

* Let y' denote the output when z’ is input (that is, y' = H{z'})

® Then

Vil = 3@l +2ln=1) = Yeal+osk-1) = o (jelnl +on-1) = asl] v
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: Linearity Example: Moving Average
.
.
<l yin) = (eln] + zn 1)
m Scaling: (Strategy to prove — Scale input z by a € C, compute output y via the formula at top,
and verify that it is scaled as well)
o Let
&[] = azlnl, aeC
« Let y' denote the output when z is input (that is, y’ = H{z'})
o Then
. 1,
Yl = 3@+ n-1)
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Linearity Example: Moving Average
3(aln] +zn 1)
= Additivity: (Strategy to prove — Input two signals into the system and verify that the output
equals the sum of the respective outputs)
* Let
2'[n] = z1[n] +z2(n]
o Let y'/y1/y> denote the output when ' /z1/x is input
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Linearity Example: Moving Average

eelsieeels

yln) = §(aln] + zfn — 1))

= Additivity: (Strategy to prove — Input two signals into the system and verify that the output
equals the sum of the respective outputs)

* Let
2'[n] = z1[n] +22ln)
o Let 3 /y1/y2 denote the output when z'/z1/x2 is input
* Then
Vil = @+ -1 = F(@ilnl + )} + ol — 1)+ zaln - 1)
= @bl - 1) + Sl 2zl — 1) = w4kl
Penn ESE 531 Spring 2019 - Khanna 72
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Example: Squaring is Nonlinear

af b

= Additivity: Input two signals into the system and see what happens

w[n])*

o Let
wln] = @), yaln] = (@2[n])®
o Set
&[] = @1[n] +zaln]
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oelsiese’s

Example: Squaring is Nonlinear

] ol

= Additivity: Input two signals into the system and see what happens

[n])®

o Let
wln = @M)*,  yeln] = (z[0)*
o Set
Zln] = o1[n] + wafn)
* Then

Y = @) = (@) +oaln])’ = (@)’ + 201 [n)an] + (@2[n])” # w1l + paln)

* Nonlinear!
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Time-Invariant Systems

A system H. ing infinite-length signals is til il iant (shift-i iant) if
a time shift of the input signal creates a corresponding time shift in the output

signal
aln o]
a4 vin—d

m Intuition: A time-invariant system behaves the same no matter when the input is applied

m A system that is not time-invariant is called time-varying
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Example: Moving Average

at] —{_#_ |t = Yalil +afe - 1)

[ =zln—ql, q€Z

m Let

m Let y' denote the output when 2’ is input (that is, 3’ = H{z'})
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Example: Moving Average

<l vl = 3(afn] +fn - 1)

2l =aln—q, q€Z

m Let

m Let 3/ denote the output when z’ is input (that is, ' = H{z'})

m Then

Vil = 3@+l 1)
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Example: Moving Average

aln vin) = b(eln] + oln — 1)

2] =1fn—q), q€Z

m Let

m Let ' denote the output when 2’ is input (that is, ' = H{z'})

= Then

Vi = 3@+ -1) = Seln—d+am-g-1) = yn-q v
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Example: Decimation

yln] = z[2n]
m This system is time-varying; demonstrate with a counter-example

m Let
z'[n] =z[n—1]

m Let 3/ denote the output when z’ is input (that is, y’ = H{z'})
m Then

Vil = 2/fn] = al2n—1] # zf2(n-1)] = yl—1)
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A system # is causal if the output y[n] at time n. depends only the input z[m] for
times m < n. In words, causal systems do not look into the future

DEFINITION

a Forward difference system:
= y[n]=x[n+1]-x[n] causal?

o Backward difference system:

= y[n]=x[n]-x[n-1] causal?
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Stability

o BIBO Stability
= Bounded-input bounded-output Stability

An LTI system is bounded-input bounded-output (BIBO) stable if a bounded
input z always produces a bounded output y

bounded bounded y

= Bounded input and output means []|o < 00 and |jy[|es < o0,
or that there exist constants A,C' < oo such that |z[n]| < A and |y[n]| < C for all n

DEFINITION

2[n] yln)
i L] freematgt L Tt 1
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System Properties - Summary

o Causality
= y[n] only depends on x|m] for m<=n
0 Linearity
= Scaled sum of arbitrary inputs results in output that is a scaled sum of
corresponding outputs
= Ax;[n]+Bx,[n] 2 Ay, [n]+By,[n]
0 Memoryless
= y[n] depends only on x[n]
0 Time Invariance
= Shifted input results in shifted output
= x[n-q] > yln-q]
o BIBO Stability

= A bounded input results in a bounded output (ie. max signal value
exists for output if max )
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Examples

o Causal? Linear? Time-invariant? Memoryle
BIBO Stable?
o Time Shift:

- yln]=xln-m]

0 Accumulator:
ynl= Y, x[k]
k=—c
o Compressor (M>1):
yln]=x{Mn]
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Big Ideas

0 Discrete Time Signals
= Unit impulse, unit step, exponential, sinusoids, complex
sinusoids
= Can be finite length, infinite length
= Properties
= Bven, odd, causal
= Periodicity and aliasing
= Discrete frequency bounded!

a Discrete Time Systems

y="H{z}

= Transform one signal to another

= Properties

= Linear, Time-invariance, memoryless, causality, BIBO stability
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0 Behind the scenes programming note:
= Additional grader: Zhefu Peng
o Enroll in Piazza site:
= piazza.com/upenn/spring2019/ese531
0 HW 0: Brush up on background and Matlab tutorial

Penn ESE 531 Spring 2019 - Khanna 85

15



