ESE 531: Digital Signal Processing

Lec 3: January 24, 2019 Discrete Time Signals and Systems

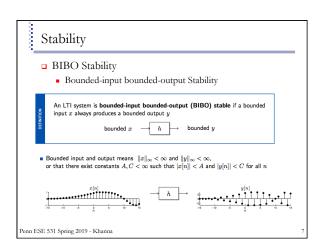
Lecture Outline □ Discrete Time Systems □ LTI Systems □ LTI System Properties Difference Equations Penn ESE 531 Spring 2019 - Khanna

Discrete-Time Systems

Penn ESE 531 Spring 2019 - Khanna

Discrete Time Systems A discrete-time $\textbf{system}~\mathcal{H}$ is a transformation (a rule or formula) that maps a discrete-time input signal \boldsymbol{x} into a discrete-time output signal \boldsymbol{y} $y=\mathcal{H}\{x\}$ $x \longrightarrow \mathcal{H} \longrightarrow y$ Systems manipulate the information in signals Examples Speech recognition system that converts acoustic waves into text Radar system transforms radar pulse into position and velocity • fMRI system transform frequency into images of brain activity Moving average system smooths out the day-to-day variability in a Penn ESE 531 Spring 2019 - Khanna

System Properties Causality • y[n] only depends on x[m] for $m \le n$ Linearity · Scaled sum of arbitrary inputs results in output that is a scaled sum of corresponding outputs • $Ax_1[n]+Bx_2[n] \rightarrow Ay_1[n]+By_2[n]$ Memoryless • y[n] depends only on x[n] □ Time Invariance · Shifted input results in shifted output • $x[n-q] \rightarrow y[n-q]$ BIBO Stability A bounded input results in a bounded output (ie. max signal value exists for output if max) Penn ESE 531 Spring 2019 - Khanna

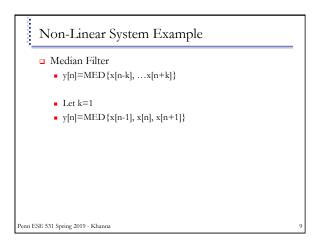


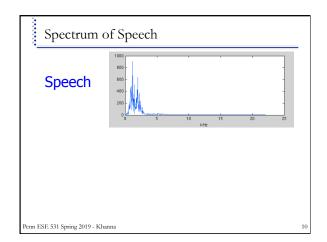
Examples

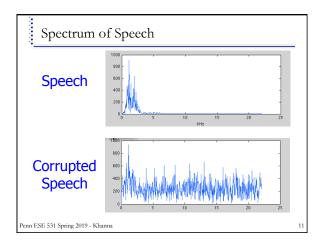
Causal? Linear? Time-invariant? Memoryless?

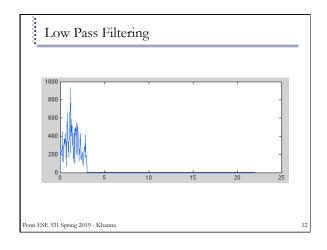
BIBO Stable?

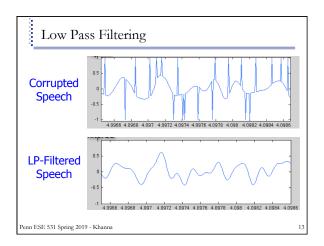
Time Shift: y[n] = x[n-m]Accumulator: $y[n] = \sum_{k=-\infty}^{n} x[k]$ Compressor (M>1): y[n] = x[Mn]

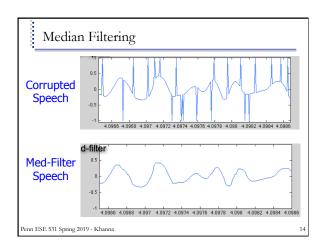


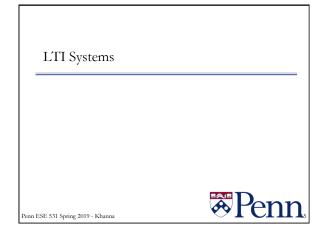












LTI Systems

A system ${\mathcal H}$ is **linear time-invariant** (LTI) if it is both linear and time-invariant

 $\begin{tabular}{ll} \square LTI system can be completely characterized by its impulse response \\ & \delta \longrightarrow \mathcal{H} \longrightarrow h \\ \end{tabular}$

☐ Then the output for an arbitrary input is a sum of weighted, delay impulse responses

$$x \longrightarrow h \longrightarrow y$$
 $y[n] = \sum_{m=-\infty}^{\infty} h[n-m]x[m]$ $y[n] = x[n] * h[n]$

Penn ESE 531 Spring 2019 - Khanna

Convolution

$$x \longrightarrow h \longrightarrow y$$

Convolution formula:

$$y[n] = x[n] * h[n] = \sum_{m=-\infty}^{\infty} h[n-m] x[m]$$

Convolution method:

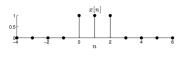
- 1) Time reverse the impulse response and shift it *n* time steps to the right
- 2) Compute the inner product between the shifted impulse response and the input vector
- Repeat for evey n

Penn ESE 531 Spring 2019 - Khanna

Convolution Example

$$y[n] \ = \ x[n] * h[n] \ = \ \sum_{m=-\infty}^{\infty} h[n-m] \, x[m]$$

Convolve a unit pulse with itself



Penn ESE 531 Spring 2019 - Khanna

Convolution is Commutative

Convolution is commutative:

x * h = h * x

□ These block diagrams are equivalent

□ Implication: pick either *b* or *x* to flip and shift when convolving

LTI Systems in Series

□ Impulse response of the cascade of two LTI systems:

Penn ESE 531 Spring 2019 - Khanna

LTI Systems in Series

□ Impulse response of the cascade of two LTI systems:

$$x \longrightarrow h_1 \longrightarrow h_2 \longrightarrow y$$

$$x \longrightarrow h_1 * h_2 \longrightarrow y$$

Proof by picture

Penn ESE 531 Spring 2019 - Khanna

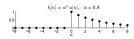
LTI Systems in Parallel

□ Impulse response of the parallel connection of two LTI

Penn ESE 531 Spring 2019 - Khanna

Causal System Revisited A system $\mathcal H$ is **causal** if the output y[n] at time n depends only the input x[m] for times $m \le n$. In words, causal systems do not look into the future

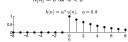
An LTI system is causal if its impulse response is causal: h[n] = 0 for n < 0



Penn ESE 531 Spring 2019 - Khanna

Causal System Revisited

An LTI system is causal if its impulse response is causal:



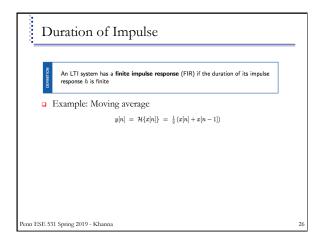
□ To prove, note that the convolution does not look into the future if the impulse response is causal

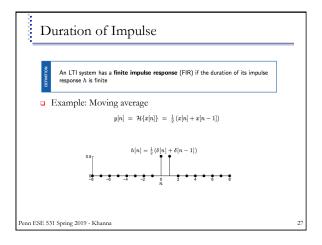
$$y[n] \; = \; \sum_{m=-\infty}^{\infty} \; h[n-m] \, x[m] \hspace{1cm} h[n-m] = 0 \; ext{when} \; m > n;$$

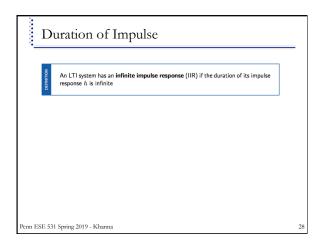
Penn ESE 531 Spring 2019 - Khanna

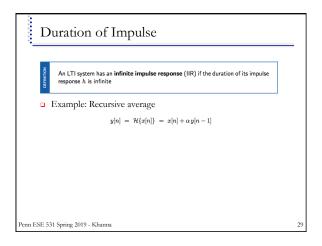
Duration of Impulse

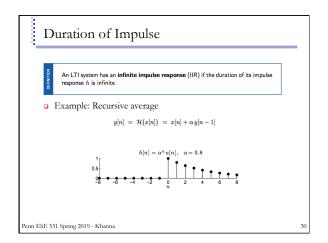
An LTI system has a \mbox{finite} impulse response (FIR) if the duration of its impulse response h is finite

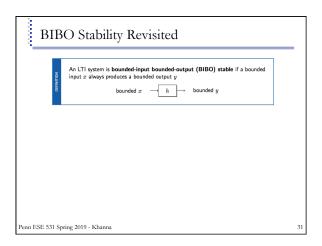




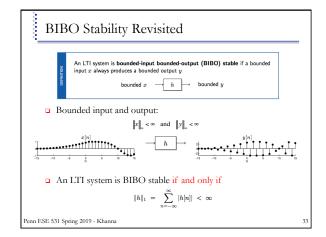








BIBO Stability Revisited An LTI system is bounded-input bounded-output (BIBO) stable if a bounded input x always produces a bounded output y bounded x bounded yBounded input and output: $\|x\|_{\infty} < \infty \text{ and } \|y\|_{\infty} < \infty$ $\|x\|_{\infty} = \max_{x \in [n]} |x|_{\infty}$ Penn ESE 531 Spring 2019 - Khanna



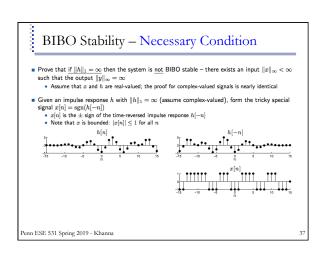
BIBO Stability — Sufficient Condition • Prove that if $\|h\|_1 < \infty$ then the system is BIBO stable – for any input $\|x\|_{\infty} < \infty$ the output $\|y\|_{\infty} < \infty$ Penn ESE 531 Spring 2019 - Khanna

BIBO Stability — Sufficient Condition

Prove that $|f||h||_1 < \infty$ then the system is BIBO stable – for any input $||x||_{\infty} < \infty$ the output $||y||_{\infty} < \infty$ Recall that $||x||_{\infty} < \infty$ means there exist a constant A such that $|x[n]| < A < \infty$ for all nLet $||h||_1 = \sum_{n=-\infty}^{\infty} |h[n]| = B < \infty$ Compute a bound on |y[n]| using the convolution of x and h and the bounds A and B $|y[n]| = \left|\sum_{m=-\infty}^{\infty} h[n-m]x[m]\right| \le \sum_{m=-\infty}^{\infty} |h[n-m]||x[m]|$ $< \sum_{m=-\infty}^{\infty} |h[n-m]|A = A \sum_{k=-\infty}^{\infty} |h[k]| = AB = C < \infty$ Since $|y[n]| < C < \infty$ for all n, $||y||_{\infty} < \infty$ Penn ESE 531 Spring 2019 - Khanna

BIBO Stability — Necessary Condition

Prove that if $\|h\|_1 = \infty$ then the system is <u>not</u> BIBO stable – there exists an input $\|x\|_{\infty} < \infty$ such that the output $\|y\|_{\infty} = \infty$ Assume that x and h are real-valued; the proof for complex-valued signals is nearly identical specified by the proof for complex of the proof



BIBO Stability - Necessary Condition

- We are proving that that $\underline{\text{if }} \|h\|_1 = \underline{\infty}$ then the system is $\underline{\text{not}}$ BIBO stable there exists an input $\|x\|_{\infty} < \infty$ such that the output $\|y\|_{\infty} = \infty$
- \blacksquare Armed with the tricky special signal x, compute the output y[n] at the time point n=0

$$\begin{array}{lll} y[0] & = & \displaystyle \sum_{m=-\infty}^{\infty} h[0-m] \, x[m] \, = \, \sum_{m=-\infty}^{\infty} h[-m] \, \mathrm{sgn}(h[-m]) \\ \\ & = & \displaystyle \sum_{m=-\infty}^{\infty} |h[-m]| \, = \, \sum_{k=-\infty}^{\infty} |h[k]| \, = \, \infty \end{array}$$

 \blacksquare So, even though x was bounded, y is <u>not</u> bounded; so system is not BIBO stable

Penn ESE 531 Spring 2019 - Khanna

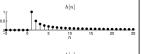
Examples

■ Example: $h[n] = \begin{cases} \frac{1}{n} & n \ge 1\\ 0 & \text{otherwis} \end{cases}$

 $||h||_1 = \sum_{n=1}^{\infty} \left|\frac{1}{n}\right| = \infty \Rightarrow \text{ not BIB}$

 $\qquad \qquad \mathbf{Example:} \ h[n] = \begin{cases} \frac{1}{n^2} & n \geq 1 \\ 0 & \text{otherwise} \end{cases}$

 $||h||_1 = \sum_{n=1}^{\infty} \left| \frac{1}{n^2} \right| = \frac{\pi^2}{6} \implies BIBO$



h[n]

Penn ESE 531 Spring 2019 - Khanna

Examples

- Example: $h[n] = \begin{cases} \frac{1}{n} & n \ge 1\\ 0 & \text{otherwise} \end{cases}$
- $\|h\|_1 = \sum_{n=1}^{\infty} \left|\frac{1}{n}\right| = \infty \implies \text{not BIBG}$
- Example: $h[n] = \begin{cases} \frac{1}{n^2} & n \ge 1\\ 0 & \text{otherwise} \end{cases}$
- $\|h\|_1 = \sum_{n=1}^{\infty} \left| \frac{1}{n^2} \right| = \frac{\pi^2}{6} \Rightarrow \mathsf{BIBO}$
- Example: h FIR \Rightarrow BIBO

h[n] (FIR)

Penn ESE 531 Spring 2019 - Khanna

Example

- \blacksquare Example: Recall the recursive average system $\quad y[n] = \mathcal{H}\{x[n]\} = x[n] + \alpha\,y[n-1]$
- Impulse response: $h[n] = \alpha^n u[n]$

Penn ESE 531 Spring 2019 - Khanna

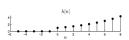
Example

- \blacksquare Example: Recall the recursive average system $\quad y[n] \ = \ \mathcal{H}\{x[n]\} \ = \ x[n] + \alpha \, y[n-1]$
- Impulse response: $h[n] = \alpha^n u[n]$
- For |α| < :</p>

 $\|h\|_1 = \sum_{n=0}^{\infty} |\alpha|^n = \frac{1}{1-|\alpha|} < \infty \ \Rightarrow \ \mathsf{BIBO}$

 $\quad \blacksquare \ \text{For} \ |\alpha| >$

 $\|h\|_1 = \sum_{n=0}^{\infty} |\alpha|^n = \infty \ \Rightarrow \ \mathrm{not} \ \mathrm{BIBO}$



Penn ESE 531 Spring 2019 - Khanna

Difference Equations

□ Accumulator example

$$y[n] = \sum_{k=-\infty}^{n} x[k]$$

$$y[n] = x[n] + \sum_{k=-\infty}^{n-1} x[k]$$

$$y[n] = x[n] + y[n-1]$$

 $y[n] - y[n-1] = x[n]$

Difference Equations

■ Accumulator example

$$y[n] = \sum_{k=-\infty}^{n} x[k]$$

$$y[n] = x[n] + \sum_{k=-\infty}^{n-1} x[k]$$

$$y[n] = x[n] + y[n-1]$$

$$y[n] - y[n-1] = x[n]$$

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{m=0}^{M} b_m x[n-m]$$

Penn ESE 531 Spring 2019 - Khanna

Difference Equations $y[n] = \sum_{k=-\infty}^{n} x[k]$ $y[n] = x[n] + \sum_{k=-\infty}^{n-1} x[k]$ y[n] = x[n] + y[n-1] y[n] - y[n-1] = x[n] $\sum_{k=0}^{N} a_k y[n-k] = \sum_{m=0}^{M} b_m x[n-m]$

Example: Difference Equation

Moving Average System

$$y[n] = \frac{1}{M_1 + M_2 + 1} \sum_{k = -M_1}^{M_2} x[n - k]$$

□ Let M_1 =0 (i.e. system is causal)

$$y[n] = \frac{1}{M_2 + 1} \sum_{k=0}^{M_2} x[n - k]$$

Penn ESE 531 Spring 2019 - Khanna

Big Ideas

Penn ESE 531 Spring 2019 - Khanna

- LTI Systems are a special class of systems with significant signal processing applications
 - Can be characterized by the impulse response
- □ LTI System Properties
 - Causality and stability can be determined from impulse response
- Difference equations suggest implementation of systems
 - Give insight into complexity of system

Penn ESE 531 Spring 2019 - Khanna

Admin

- □ HW 1 posted tomorrow
 - Due 2/3 at midnight
 - Submit in Canvas