University of Pennsylvania Department of Electrical and System Engineering Digital Signal Processing

ESE531, Spring 2019	Midterm	Tuesday, March 12

- 5 Problems with point weightings shown. All 5 problems must be completed.
- Calculators allowed.
- Closed book = No text allowed. One two-sided 8.5×11 cheat sheet allowed.
- Final answers here.
- Additional workspace in "blue" book. Note where to find work in "blue" book if relevant.

Name:

Grade:

Q1	
Q2	
Q3	
Q4	
Q5	
Total	

TABLE 2.3 FOURIER TRANSFORM PAIRS

Sequence Fourier Transform		TABLE 2.2 FOURIER TRANSFORM THEOREMS			
1. δ[n]	1	Sequence	Fourier Transform		
2. $\delta[n - n_0]$	$e^{-j\omega n_0}$	x[n]	$X\left(e^{j\omega} ight)$		
3. 1 $(-\infty < n < \infty)$	$\sum_{k=1}^{\infty} 2\pi \delta(\omega + 2\pi k)$	<i>y</i> [<i>n</i>]	$Y(e^{j\omega})$		
	<i>k</i> =−∞	1. $ax[n] + by[n]$	$aX(e^{j\omega}) + bY(e^{j\omega})$		
4. $a^n u[n]$ (<i>a</i> < 1)	$\frac{1}{1-ae^{-j\omega}}$	2. $x[n-n_d]$ (n_d an integer)	$e^{-j\omega n_d} X(e^{j\omega})$		
5[1]	1 $\sum_{k=1}^{\infty} \pi^{k}(x+2\pi k)$	3. $e^{j\omega_0 n} x[n]$	$X(e^{j(\omega-\omega_0)})$		
5. u[n]	$\frac{1}{1 - e^{-j\omega}} + \sum_{k=-\infty}^{k} n \delta(\omega + 2\pi k)$	4. $x[-n]$	$X(e^{-j\omega})$ $X^*(e^{j\omega})$ if $x[n]$ real.		
6. $(n+1)a^n u[n]$ (<i>a</i> < 1)	$\overline{(1-ae^{-j\omega})^2}$		$d\mathbf{Y}(e^{j\omega})$		
7. $\frac{r^n \sin \omega_p(n+1)}{\sin \omega_n} u[n] (r < 1)$	$\frac{1}{1 - 2r\cos(\omega_{1}e^{-j\omega} + r^{2}e^{-j2\omega})}$	5. $nx[n]$	$j\frac{dx(e^{j-1})}{d\omega}$		
$\sin \omega_{-n}$	$1 = 2r \cos(\mu r) + r + r + r$	6. $x[n] * y[n]$	$X(e^{j\omega})Y(e^{j\omega})$		
8. $\frac{\sin \omega_c n}{\pi n}$	$X(e^{j\omega}) = \begin{cases} 1, & \omega < \omega_c, \\ 0, & \omega_c < \omega \le \pi \end{cases}$	7. $x[n]y[n]$	$\frac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{j\theta})Y(e^{j(\omega-\theta)})d\theta$		
9. $x[n] = \begin{cases} 1, & 0 \le n \le M \\ 0, & \text{otherwise} \end{cases}$	$\frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}e^{-j\omega M/2}$	Parseval's theorem:	<u> </u>		
10. $e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi\delta(\omega-\omega_0+2\pi k)$	$8.\sum_{n=-\infty}^{\infty} x[n] ^{2}=\frac{1}{2\pi}\int_{-\pi}^{\pi} X\left(e^{j\omega}\right) ^{2}d\omega$			
11. $\cos(\omega_0 n + \phi)$	$\sum_{k=-\infty}^{\infty} [\pi e^{j\phi} \delta(\omega - \omega_0 + 2\pi k) + \pi e^{-j\phi} \delta(\omega + \omega_0 + 2\pi k)]$	9. $\sum_{n=-\infty}^{\infty} x[n]y^*[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})Y^*(e^{j\omega})d\omega$			
TABLE 3.1 SOME COMMON <i>z</i> -TRANSFORM	PAIRS				
Sequence T	ransform ROC				
1. δ[n] 1	All z				
2. $u[n]$ $\frac{1}{1-z^{-1}}$	z > 1	TABLE 3.2 SOME z-TRANSFORM PROPERTIES			
$3, -\mu[-n-1]$ <u>1</u>	7 < 1	Property Section			

	1 - 2						
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1	Property	Section Reference	Sequence	Transform	ROC
4. $\delta[n-m]$	z^{-m}	All z except 0 (if $m > 0$) or ∞ (if $m < 0$)	Tumber	Reference	r[n]	Y(7)	R
5. $a^{n}u[n]$	$\frac{1}{1 - 1}$	z > a			x[n]	$\mathbf{X}(z)$	R _X
	$1 - az^{-1}$				$x_1[n]$	$\mathbf{A}_{1}(z)$	\mathbf{x}_{x_1}
6. $-a^n u[-n-1]$	$\frac{1}{11}$	z < a			$x_2[n]$	$X_2(z)$	R_{x_2}
	$1 - az^{-1}$		1	3.4.1	$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$	Contains $R_{x_1} \cap R_{x_2}$
7. $na^nu[n]$	$\frac{az}{(1-az^{-1})^2}$	z > a	2	3.4.2	$x[n-n_0]$	$z^{-n_0}X(z)$	R_x , except for the possible
8. $-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a					addition or deletion of the origin or ∞
0	$1-\cos(\omega_0)z^{-1}$	1-1 - 1	3	3.4.3	$z_0^n x[n]$	$X(z/z_0)$	$ z_0 R_x$
9. $\cos(\omega_0 n)u[n]$	$1 - 2\cos(\omega_0)z^{-1} + z^{-2}$	z > 1	4	2 4 4		dX(z)	D
	$\sin(\omega_0)z^{-1}$		4	5.4.4	nx[n]	-z - dz	R _x
10. $\sin(\omega_0 n)u[n]$	$\overline{1-2\cos(\omega_0)z^{-1}+z^{-2}}$	z > 1	5	3.4.5	$x^{*}[n]$	$X^{*}(z^{*})^{*}$	R_x
11. $r^n \cos(\omega_0 n) u[n]$	$\frac{1 - r\cos(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$	z > r	6		$\mathcal{R}e\{x[n]\}$	$\frac{1}{2}[X(z)+X^*(z^*)]$	Contains R_x
12. $r^n \sin(\omega_0 n) u[n]$	$\frac{r\sin(\omega_0)z^{-1}}{1-2r\cos(\omega_0)z^{-1}+r^2z^{-2}}$	z > r	7		$\mathcal{I}m\{x[n]\}$	$\frac{1}{2i}[X(z) - X^*(z^*)]$	Contains R_x
$a^n, 0 \le n \le N - 1,$	$1 - a^{N} z^{-N}$		8	3.4.6	$x^{*}[-n]$	$X^{*}(1/z^{*})$	$1/R_x$
13. { 0, otherwise	$1 - az^{-1}$	z > 0	9	3.4.7	$x_1[n] \ast x_2[n]$	$X_1(z)X_2(z)$	Contains $R_{x_1} \cap R_{x_2}$

Trigonometric Identity:

$$e^{j\Theta} = \cos(\Theta) + j\sin(\Theta)$$

Geometric Series:

$$\sum_{n=0}^{N} r^{n} = \frac{1-r^{N+1}}{1-r}$$
$$\sum_{n=0}^{\infty} r^{n} = \frac{1}{1-r}, |r| < 1$$

DTFT Equations:

$$X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} x[k]e^{-j\omega k}$$
$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})e^{j\omega n} d\omega$$

ESE531

Z-Transform Equations:

$$X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$
$$x[n] = \frac{1}{2\pi j} \oint_{C} X(z) z^{n-1} dz$$

Upsampling/Downsampling:

Upsampling by L (\uparrow L): $X_{up} = X(e^{j\omega L})$ Downsampling by M (\downarrow M): $X_{down} = \frac{1}{M} \sum_{i=0}^{M-1} X(e^{j(\frac{\omega}{M} - \frac{2\pi}{M}i)})$

Interchange Identities:

$$\begin{array}{rcl} x[n] & & & & & \\ & & & \\ & & & \\$$

1. (10 points) Consider a discrete-time system with input x[n] and output y[n] that satisfy the difference equation:

$$y[n] = n \cdot y[n-1] + x[n].$$
(1)

The system is causal and satisfies initial-rest conditions; i.e. if x[n] = 0 for n < 0, then y[n] = 0 for n < 0. If $x[n] = \delta[n]$, determine y[n] for all n.

2. (20 points) Suppose you have a discrete-time system with impulse response

$$h[n] = 0.9^{n} u[n] \tag{2}$$

where u[n] is the unit step function. If an input

$$x[n] = \cos\left(\frac{\pi}{6}n\right) \tag{3}$$

is applied to the system, determine the output y[n].

3. (20 points) Consider a standard system (shown below) consisting of a C/D converter, a discrete-time system, and a D/C converter. Suppose that the Fourier transform $X_c(j\Omega)$ of $x_c(t)$ obeys $X_c(j\Omega) = 0$ for $|\Omega| \ge 2\pi 1000$, and that the discrete-time system is a squarer, i.e. $y[n] = x^2[n]$.

- (a) What is the largest value of T such that $y_c(t) = x_c^2(t)$? Justify your answer.
- (b) Is the discrete-time system (the squarer) an LTI system? Justify your answer.

4. (25 points) Consider an LTI system whose response to the input signal

$$x[n] = 2\delta[n-2] + \delta[n-3] + \delta[n-4]$$
(4)

is the output signal

$$y[n] = 6\delta[n] - \delta[n-1] + 3\delta[n-2] - \delta[n-3] + \delta[n-4].$$
(5)

(a) Find the transfer function, H(z) and the impulse response, h[n], of this system.

ESE531

(You may continue problem 1 on this almost blank page.)

(This page intentionally left almost blank for pagination.)

5. (25 pts) Consider the decimation filter structure shown below:

where $y_0[n]$ and $y_1[n]$ are generated according to the following difference equations:

$$y_0[n] = \frac{1}{4}y_0[n-1] - \frac{1}{3}x_0[n] + \frac{1}{8}x_0[n-1]$$
(6)

$$y_1[n] = \frac{1}{4}y_1[n-1] + \frac{1}{12}x_1[n]$$
(7)

(a) How many multiplies per output sample does the implementation of the filter structure require? (I.e How many multiplications are necessary to evaluate the current output sample assuming you have all previous inputs and outputs available.) Consider a divide to be equivalent to a multiply. The decimation filter can also be implemented as shown below:

$$\begin{array}{c} x[n] \\ \hline H(z) \\ \hline y[n] \\ \downarrow 2 \\ \hline \end{array}$$

where $v[n] = a \cdot v[n-1] + b \cdot x[n] + c \cdot x[n-1]$.

- (b) Determine a, b, and c.
- (c) How many multiplies per output sample does this second implementation require?