ESE531 Spring 2020

University of Pennsylvania Department of Electrical and System Engineering Digital Signal Processing

ESE531, Spring 2020 HW1: Discrete-time Sigs and Systems Friday, January 24

Due: Sunday, February 2, 11:59PM

- Problems: All problems must be turned in and are not optional for full credit
 - 1. Homework problems from the book: 2.23, 2.28, 2.36, 2.54, 2.64, 2.76
 - 2. Matlab problem: The M-point moving average (MA) filter is the filter of textbook Example 2.3 with $M_1 = 0$ and $M_2 = M 1$. Consider a signal $\{s[n]\}$ corrupted by additive random noise $\{w[n]\}$. The resulting sequence is: x[n] = s[n] + w[n], for all n. Useful MATLAB commands to look up: wgn, randn, filter, conv.
 - (a) Generate signal $s[n] = 2n(0.9)^n$, for n = 0, 1, ..., 100
 - (b) Generate independent Gaussian random noise with mean=0 and variance=1 $(\mu_w = 0, \sigma_w^2 = 1), w[n], \text{ for } n = 0, 1, ..., 100.$ Note noise power in decibels: $dB = 10 \log_{10}(Variance).$
 - (c) Plot the discrete-time signals (stem plot!) $\{s[n]\}$, $\{w[n]\}$, and $\{x[n]\}$. Label all axes within MATLAB and submit code and plots with homework.
 - (d) Apply a 5-point moving MA filter to the sequence $\{x[n]\}$ and generate the output sequence $\{y[n]\}$. Plot $\{s[n]\}$ and $\{y[n]\}$ on the same (labeled!) axes to observe the effect of filtering. Submit code and plot.
 - (e) Instead of noise, generate an interference frequency $w_{int}[n] = cos[2\pi f n]$, for n = 0, 1, ..., 100 with f = 0.2. Filter $x_{int}[n] = s[n] + w_{int}[n]$ with an M-point MA filter for M=4, 5 and 6. Plot and submit the results of each MA filter similar to part (d). Is the interference completely removed? Comment on your result.