ESE 531: Digital Signal Processing

Lec 12: February 25, 2020 Data Converters, Noise Shaping

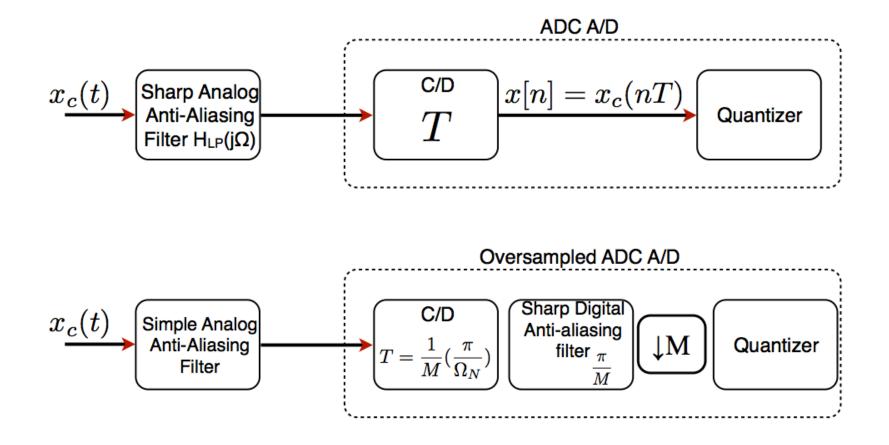
Penn ESE 531 Spring 2020 - Khanna

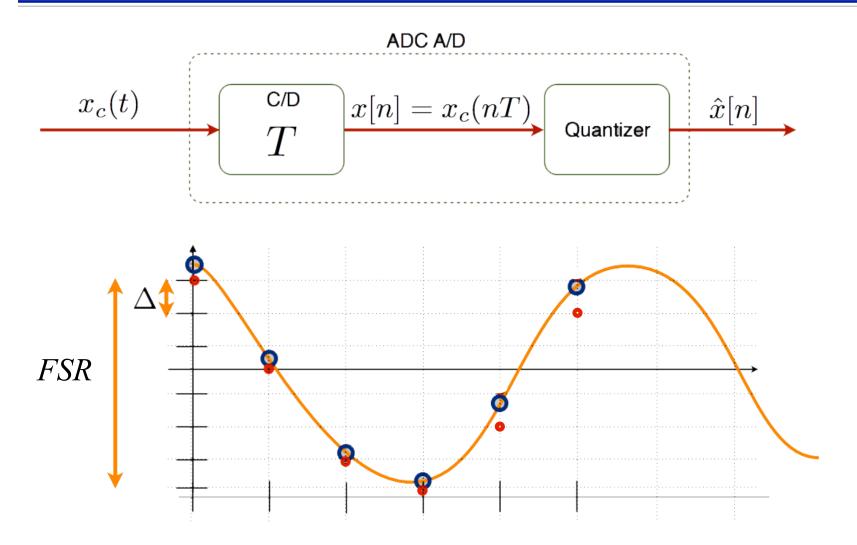
- Data Converters
 - Anti-aliasing
 - ADC
 - Quantization
 - Practical DAC
- Noise Shaping

ADC

Analog to Digital Converter

Penn ESE 531 Spring 2020 - Khanna

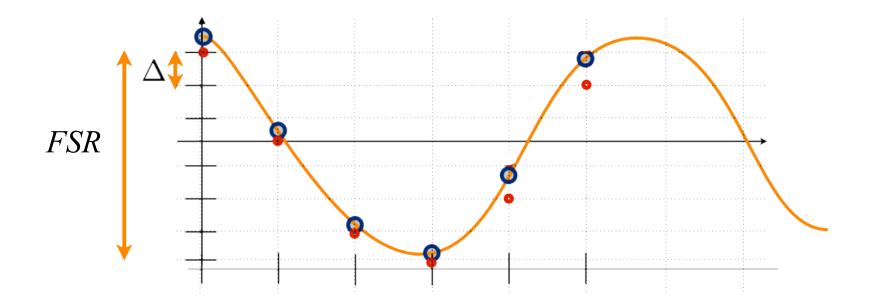




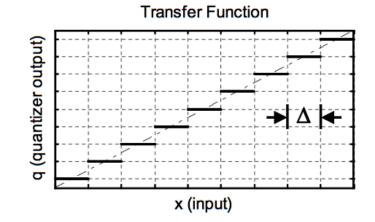
Sampling and Quantization

• For an input signal with V_{pp} =FSR with B bits

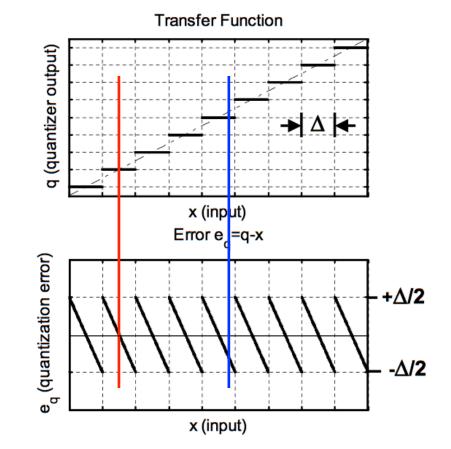
 $\Delta = \frac{FSR}{2^B}$



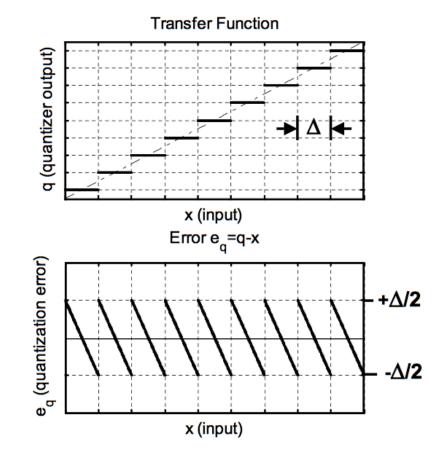
\Box Quantization step Δ



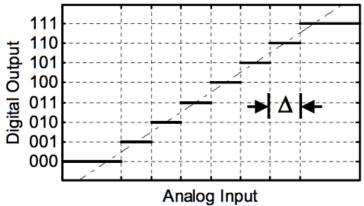
- \Box Quantization step Δ
- Quantization error has sawtooth shape
 - Bounded by $-\Delta/2$, $+\Delta/2$



- **Quantization step** Δ
- Quantization error has sawtooth shape
 - Bounded by $-\Delta/2$, $+\Delta/2$
- Ideally infinite input range and infinite number of quantization levels



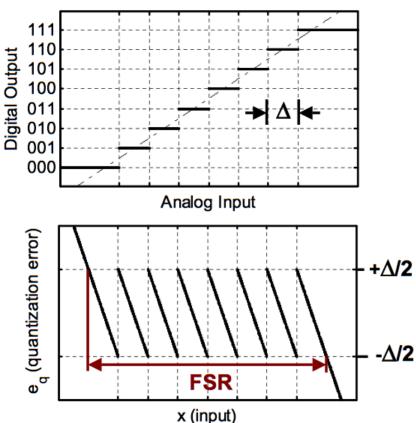
- Practical quantizers have a limited input range and a finite set of output codes
- E.g. a 3-bit quantizer can map onto
 2³=8 distinct output codes



Ideal B-bit Quantizer

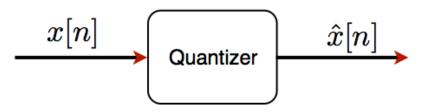
- Practical quantizers have a limited input range and a finite set of output codes
- E.g. a 3-bit quantizer can map onto
 2³=8 distinct output codes

- Quantization error grows out of bounds beyond code boundaries
- We define the full scale range (FSR) as the maximum input range that satisfies $|e_q| \le \Delta/2$
 - Implies that $FSR = 2^B \cdot \Delta$



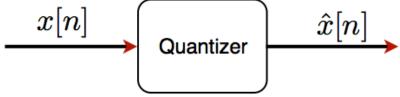
Effect of Quantization Error on Signal

- Quantization error is a deterministic function of the signal
 - Consequently, the effect of quantization strongly depends on the signal itself
- Unless, we consider fairly trivial signals, a deterministic analysis is usually impractical
 - More common to look at errors from a statistical perspective
 - "Quantization noise"
- □ Two aspects
 - How much noise power (variance) does quantization add to our samples?
 - How is this noise distributed in frequency?

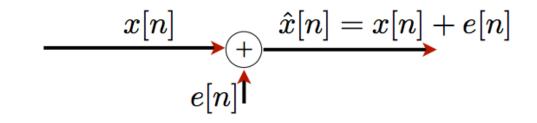


Model quantization error as noise:

Penn ESE 531 Spring 2020 - Khanna



Model quantization error as noise:

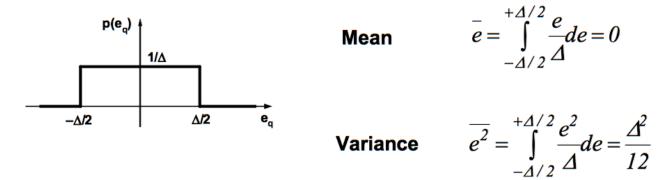


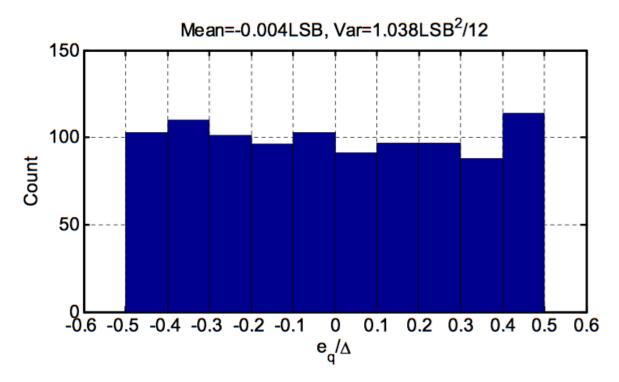
□ In that case:

 $-\Delta/2 \leq e[n] < \Delta/2$

Quantization Error Statistics

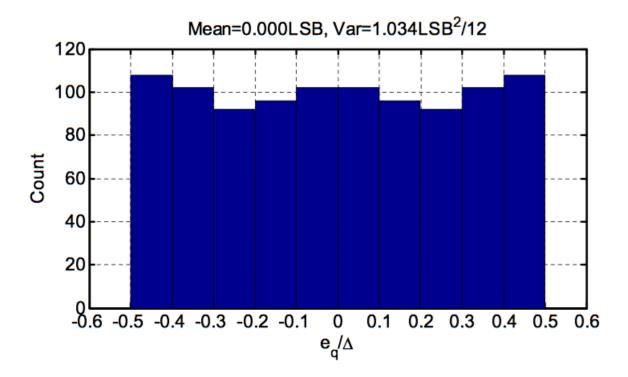
- Crude assumption: e_q(x) has uniform probability density
- This approximation holds reasonably well in practice when
 - Signal spans large number of quantization steps
 - Signal is "sufficiently active"
 - Quantizer does not overload



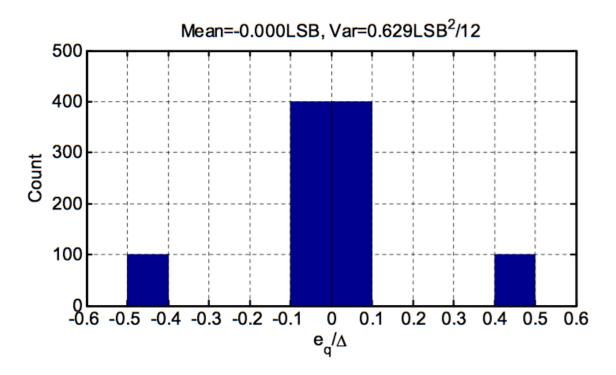


• Shown is a histogram of e_q in an 8-bit quantizer

• Input sequence consists of 1000 samples with Gaussian distribution, $4\sigma = FSR$



□ Same as before, but now using a sinusoidal input signal with $f_{sig}/f_s = 101/1000$



- □ Same as before, but now using a sinusoidal input signal with $f_{sig}/f_s = 100/1000$
- □ What went wrong?

$$\mathbf{v}_{\rm sig}[n] = \cos\left(2\pi \cdot \frac{f_{\rm sig}}{f_{\rm S}} \cdot n\right)$$

□ Signal repeats every m samples, where m is the smallest integer that satisfies $m \cdot \frac{f_{sig}}{f_S} = \text{integer}$

$$\mathbf{v}_{\rm sig}(n) = \cos\left(2\pi \cdot \frac{f_{\rm sig}}{f_{\rm S}} \cdot n\right)$$

• Signal repeats every m samples, where m is the smallest integer that satisfies $m \cdot \frac{f_{sig}}{f_s} = \text{integer}$ $m \cdot \frac{101}{1000} = \text{integer} \Rightarrow m=1000$ $m \cdot \frac{100}{1000} = \text{integer} \Rightarrow m=10$

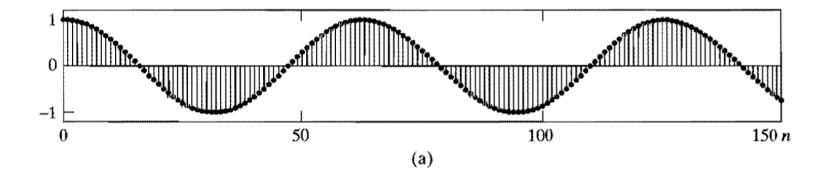
□ This means that in the last case $e_q(n)$ consists at best of 10 different values, even though we took 1000 samples

Noise Model for Quantization Error

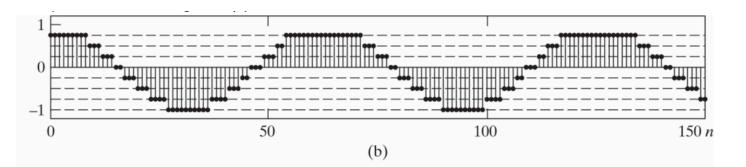
• Assumptions:

- Model e[n] as a sample sequence of a stationary random process
- e[n] is not correlated with x[n]
- e[n] not correlated with e[m] where $m \neq n$
- $e[n] \sim U[-\Delta/2, \Delta/2]$ (uniform pdf)
- Result:
 Variance is: \sigma_e^2 = \frac{\Delta^2}{12}
- Assumptions work well for signals that change rapidly, are not clipped, and for small Δ

Figure 4.57 Example of quantization noise. (a) Unquantized samples of the signal x[n] = 0.99cos(n/10).



• Figure 4.57(continued) (b) Quantized samples of the cosine waveform in part (a) with a 3-bit quantizer.



• **Figure 4.57**(continued) (b) Quantized samples of the cosine waveform in part (a) with a 3bit quantizer. (c) Quantization error sequence for 3-bit quantization of the signal in (a).

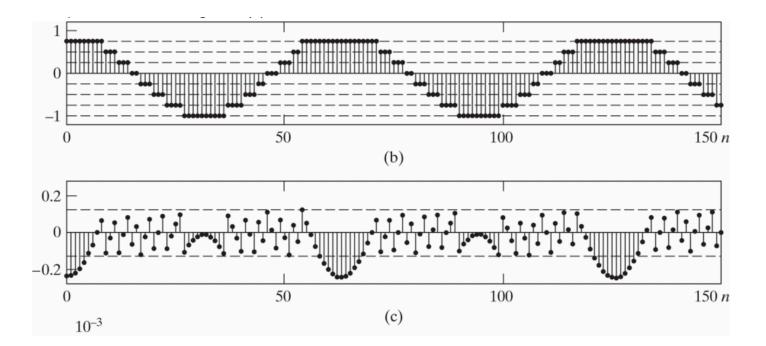
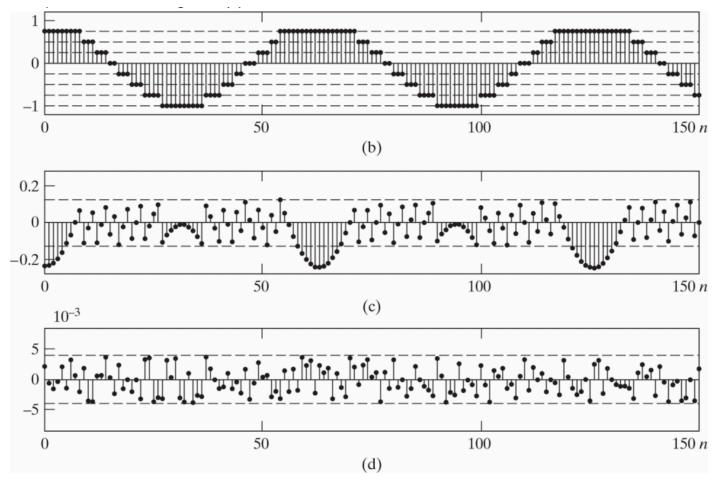


Figure 4.57(continued) (b) Quantized samples of the cosine waveform in part (a) with a 3-bit quantizer. (c) Quantization error sequence for 3-bit quantization of the signal in (a). (d) Quantization error sequence for 8-bit quantization of the signal in (a).



Penn ESE 531 Spring 2020 - Khanna

• For uniform B bits quantizer

$$SNR_Q = 10 \log_{10} \left(\frac{\sigma_x^2}{\sigma_e^2} \right)$$

Signal-to-Quantization-Noise Ratio

• For uniform B bits quantizer

$$SNR_Q = 10 \log_{10} \left(\frac{\sigma_x^2}{\sigma_e^2}\right)$$
$$= 10 \log_{10} \left(\frac{12 \cdot 2^{2B} \sigma_x^2}{FSR^2}\right)$$

$$\mathrm{SNR}_Q = 6.02B + 10.8 - 20 \log_{10} \left(\frac{FSR}{\sigma_x}\right)^{\text{Quantizer range}}$$

$$SNR_Q = 6.02B + 10.8 - 20 \log_{10} \left(\frac{FSR}{\sigma_x}\right)^{\text{Quantizer range}}$$
rms of amp

- □ Improvement of 6dB with every bit
- The range of the quantization must be adapted to the rms amplitude of the signal
 - Tradeoff between clipping and noise!
 - Often use pre-amp
 - Sometimes use analog auto gain controller (AGC)

• Assuming full-scale sinusoidal input, we have

$$SQNR = \frac{P_{sig}}{P_{qnoise}} =$$

Signal-to-Quantization-Noise Ratio

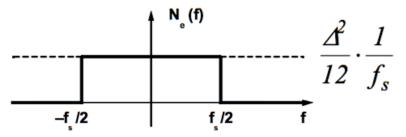
• Assuming full-scale sinusoidal input, we have

$$SQNR = \frac{P_{sig}}{P_{qnoise}} = 6.02B + 1.76 \text{ dB}$$

B (Number of Bits)	SQNR
8	50dB
12	74dB
16	98dB
20	122dB

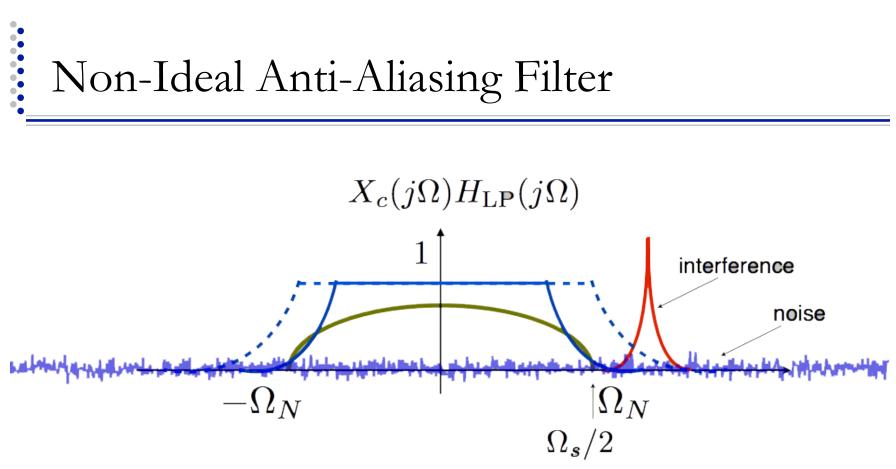
Quantization Noise Spectrum

 If the quantization error is "sufficiently random", it also follows that the noise power is uniformly distributed in frequency

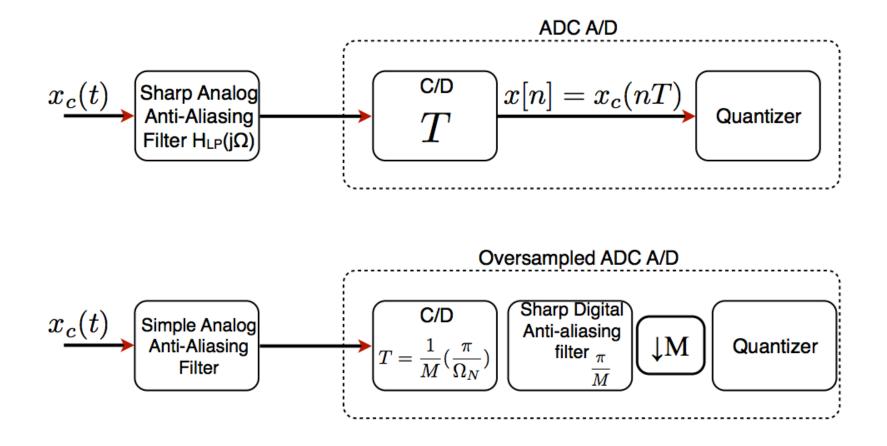


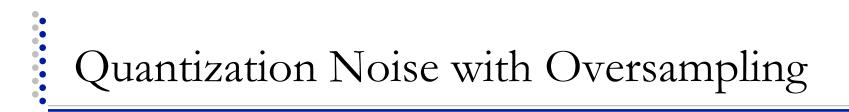
References

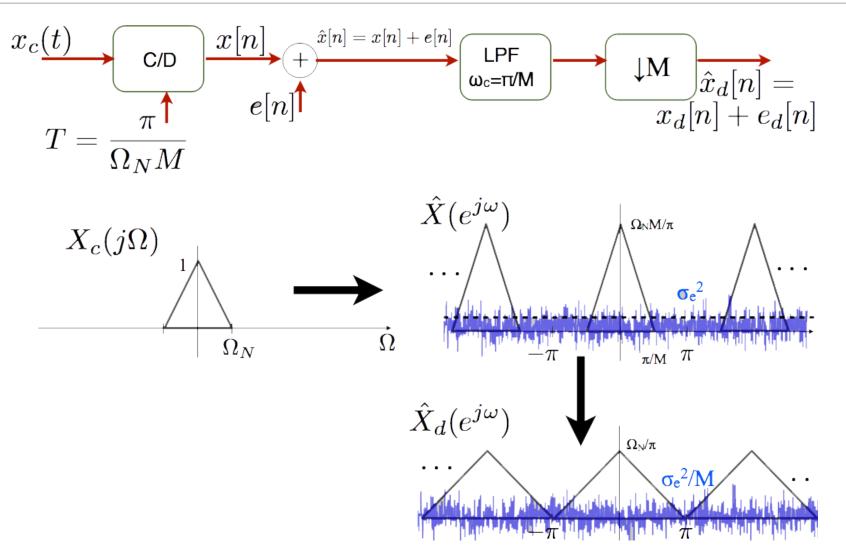
- W. R. Bennett, "Spectra of quantized signals," Bell Syst. Tech. J., pp. 446-72, July 1988.
- B. Widrow, "A study of rough amplitude quantization by means of Nyquist sampling theory," IRE Trans. Circuit Theory, vol. CT-3, pp. 266-76, 1956.



- Problem: Hard to implement sharp analog filter
- Consequence: Crop part of the signal and suffer from noise and interference







Quantization Noise with Oversampling

- Energy of $x_d[n]$ equals energy of x[n]
 - No filtering of signal!
- □ Noise variance is reduced by factor of M

$$SNR_Q = 6.02B + 10.8 - 20 \log_{10} \left(\frac{FSR}{\sigma_x}\right) + 10 \log_{10} M$$

- For doubling of M we get 3dB improvement, which is the same as 1/2 a bit of accuracy
 - With oversampling of 16 with 8bit ADC we get the same quantization noise as 10bit ADC!

Practical DAC

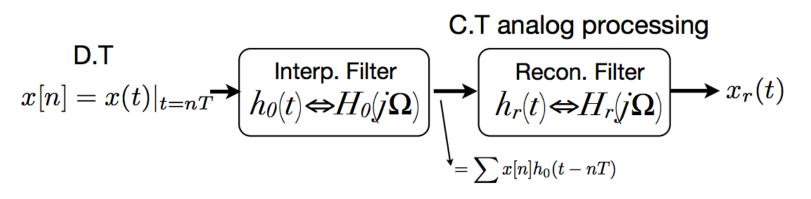
Penn ESE 531 Spring 2020 - Khanna

D.T

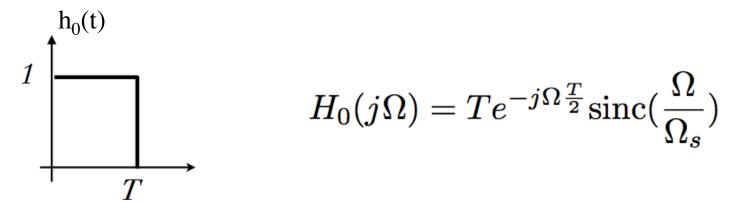
$$x[n] = x(t)|_{t=nT}$$
 $\xrightarrow{\text{sinc pulse}}$ $x_r(t) = \sum_{n=-\infty}^{\infty} x[n] \text{sinc} \left(\frac{t-nT}{T}\right)$

Scaled train of sinc pulses

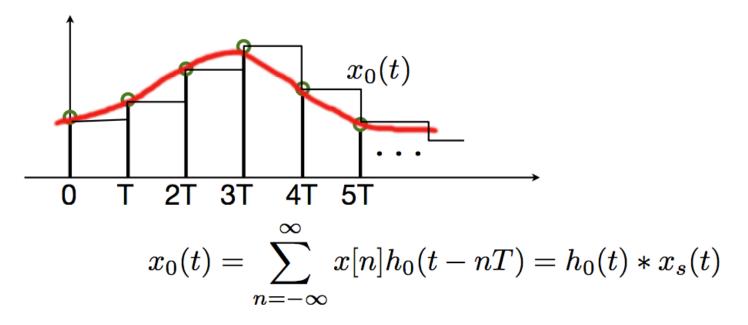
Difficult to generate sinc \rightarrow Too long!



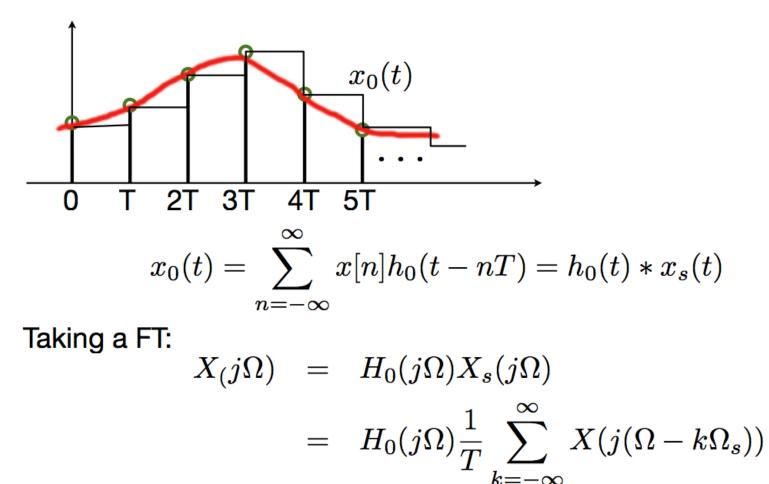
- $h_0(t)$ is finite length pulse \rightarrow easy to implement
- □ For example: zero-order hold



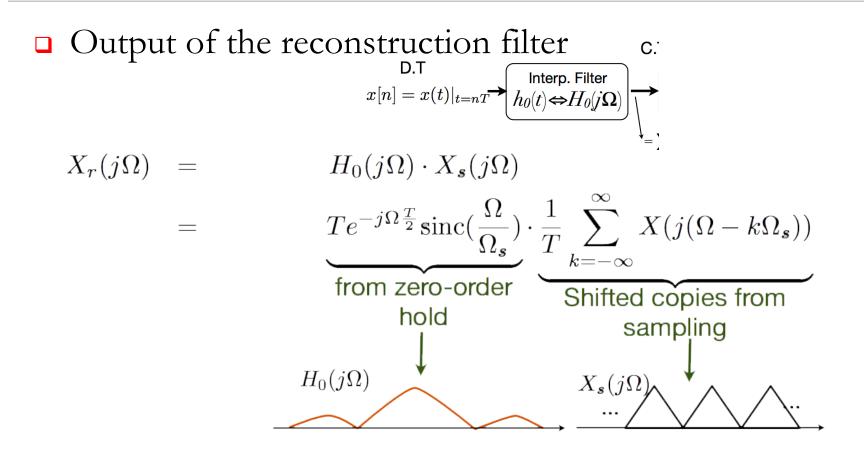
Zero-Order-Hold interpolation

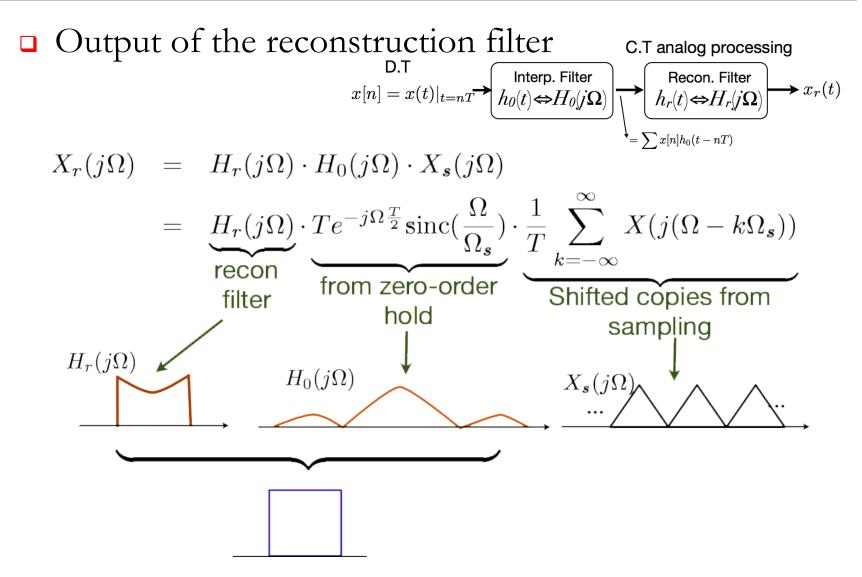


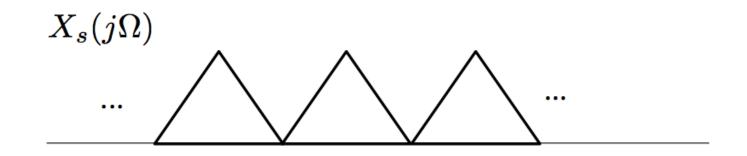
Zero-Order-Hold interpolation



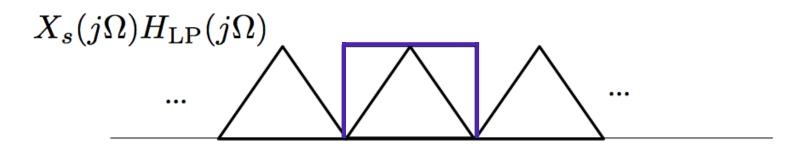
Practical DAC

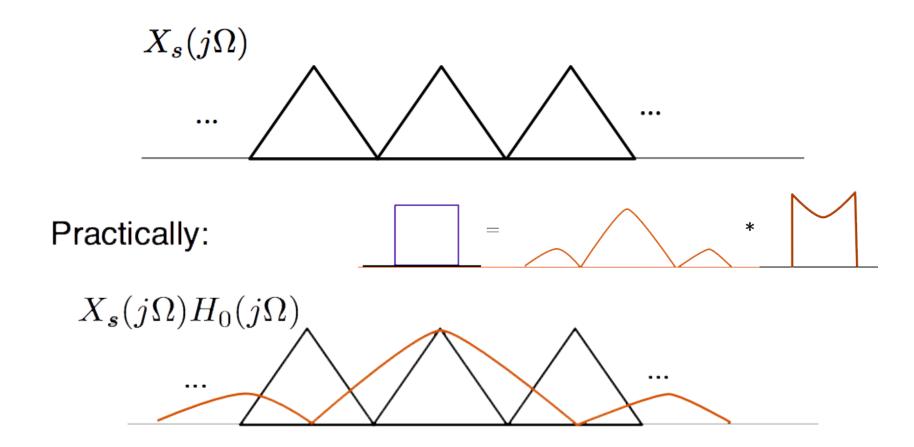


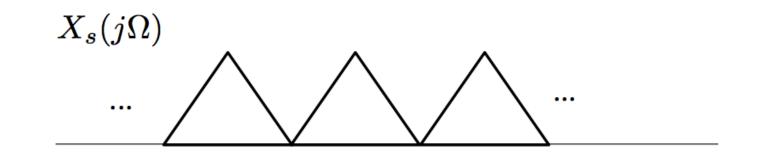




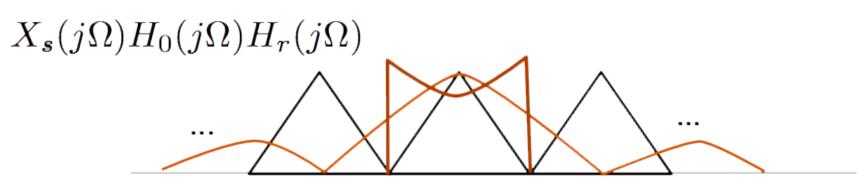
Ideally:



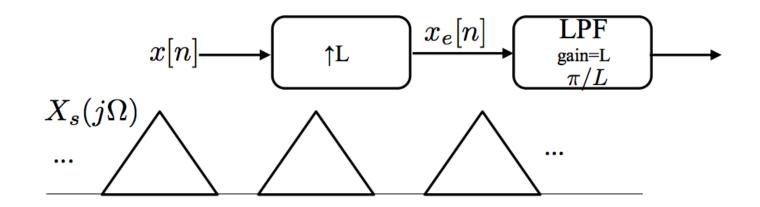




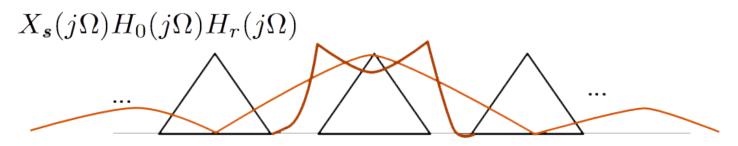
Practically:



Practical DAC with Upsampling

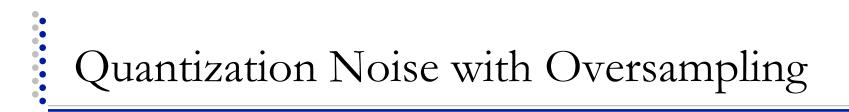


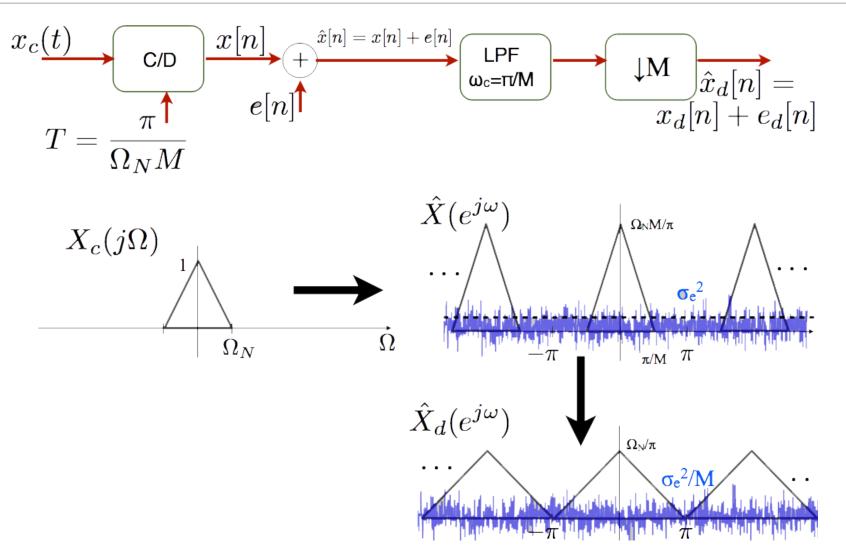
Practically:



Noise Shaping

Penn ESE 531 Spring 2020 - Khanna



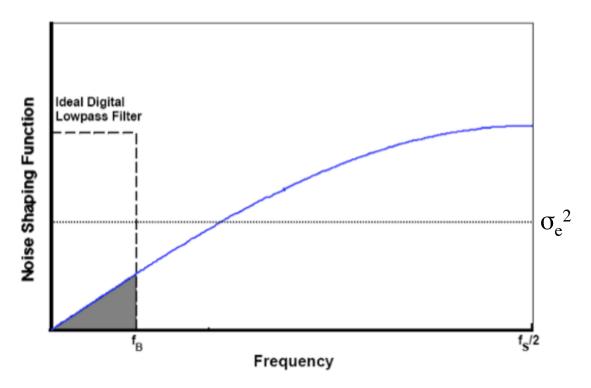


Quantization Noise with Oversampling

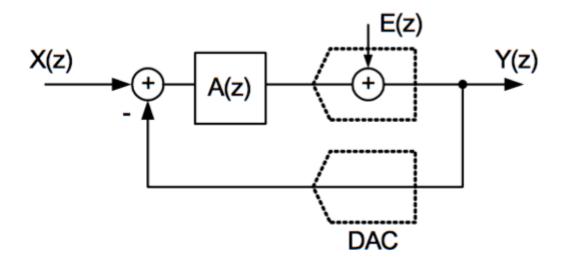
- Energy of $x_d[n]$ equals energy of x[n]
 - No filtering of signal!
- □ Noise variance is reduced by factor of M

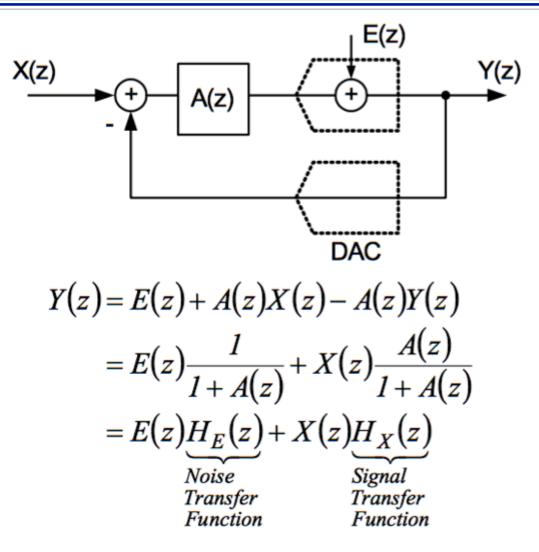
$$SNR_Q = 6.02B + 10.8 - 20\log_{10}\left(\frac{X_m}{\sigma_x}\right) + 10\log_{10}M$$

- For doubling of M we get 3dB improvement, which is the same as 1/2 a bit of accuracy
 - With oversampling of 16 with 8bit ADC we get the same quantization noise as 10bit ADC!

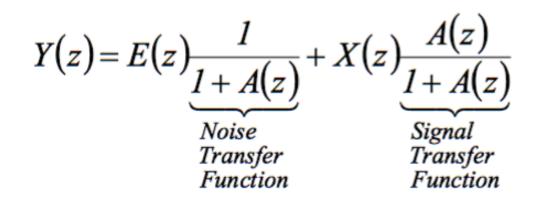


- Idea: "Somehow" build an ADC that has most of its quantization noise at high frequencies
- □ Key: Feedback

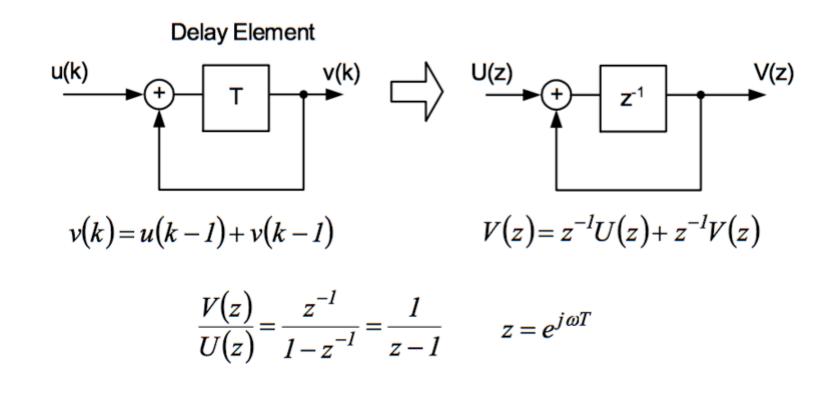




Noise Shaping Using Feedback

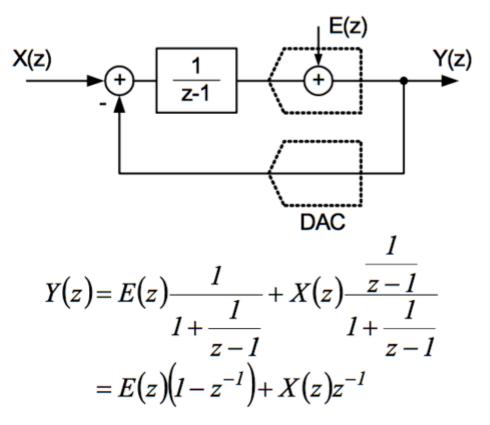


- Objective
 - Want to make STF unity in the signal frequency band
 - Want to make NTF "small" in the signal frequency band
- □ If the frequency band of interest is around DC $(0...f_B)$ we achieve this by making |A(z)| >> 1 at low frequencies
 - Means that NTF << 1
 - Means that STF = 1



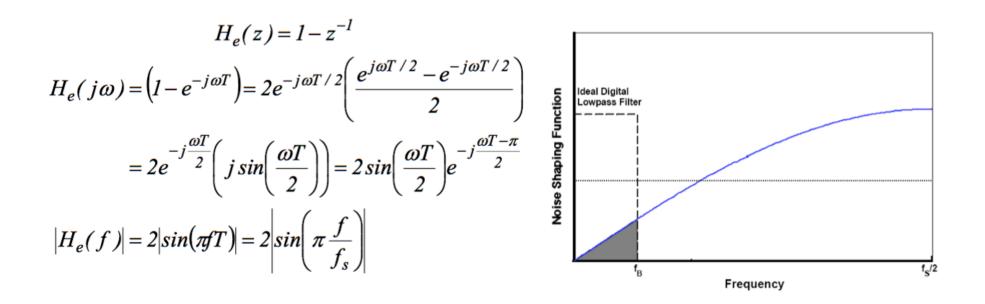
□ "Infinite gain" at DC ($\omega = 0, z=1$)

First Order Sigma-Delta Modulator



Output is equal to delayed input plus filtered quantization noise

$$H_e(z) = l - z^{-l}$$

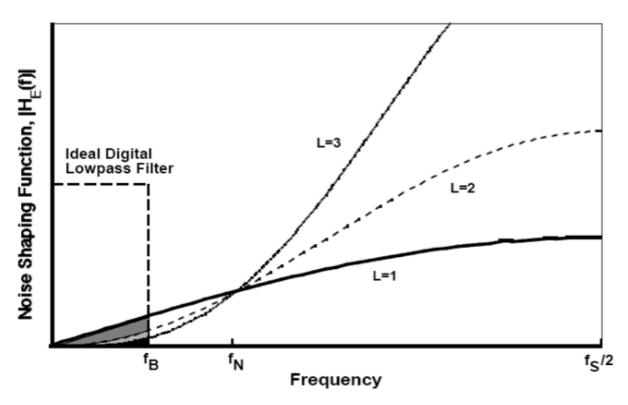


- "First order noise Shaping"
 - Quantization noise is attenuated at low frequencies, amplified at high frequencies

Higher Order Noise Shaping

□ Lth order noise transfer function

$$H_E(z) = \left(l - z^{-l}\right)^L$$



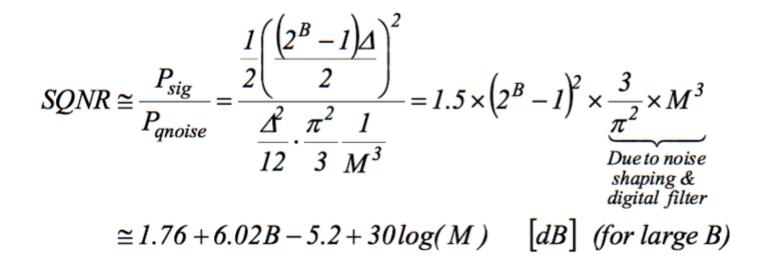
In-Band Quantization Noise

- Question: If we had an ideal digital lowpass, what is the achieved SQNR as a function of oversampling ratio?
- Can integrate shaped quantization noise spectrum up to f_B and compare to full-scale signal

$$P_{qnoise} = \int_{0}^{f_B} \frac{\Delta^2}{12} \cdot \frac{2}{f_s} \cdot \left[2 \sin\left(\pi \frac{f}{f_s}\right) \right]^2 df$$
$$\approx \int_{0}^{f_B} \frac{\Delta^2}{12} \cdot \frac{2}{f_s} \cdot \left[2\pi \frac{f}{f_s} \right]^2 df$$
$$\approx \frac{\Delta^2}{12} \cdot \frac{\pi^2}{3} \left[\frac{2f_B}{f_s} \right]^3 = \frac{\Delta^2}{12} \cdot \frac{\pi^2}{3} \frac{1}{M^3}$$

In-Band Quantization Noise

• Assuming a full-scale sinusoidal signal, we have



□ Each 2x increase in M results in 8x SQNR improvement

Also added ¹/₂ bit resolution

- Increasing M by 2x, means 3-dB reduction in quantization noise power, and thus 1/2 bit increase in resolution
 - "1/2 bit per octave"
- □ Is this useful?
- **•** Reality check
 - Want 16-bit ADC, f_B=1MHz
 - Use oversampled 8-bit ADC with digital lowpass filter
 - 8-bit increase in resolution necessitates oversampling by 16 octaves

$$f_s \ge 2 \cdot f_B \cdot M = 2 \cdot 1MHz \cdot 2^{16}$$
$$\ge 131GHz$$

SQNR Improvement

- **D** Example Revisited
 - Want 16-bit ADC, f_B=1MHz
 - Use oversampled 8-bit ADC, first order noise shaping and (ideal) digital lowpass filter
 - SQNR improvement compared to case without oversampling is -5.2dB+30log(M)
 - 8-bit increase in resolution (48 dB SQNR improvement) would necessitate M≅60 → f_S=120MHz
- □ Not all that bad!

м	SQNR improvement
16	31dB (~5 bits)
256	67dB (~11 bits)
1024	85dB (~14 bits)

- Quantizers
 - Introduces quantization noise
- Data Converters
 - Oversampling to reduce interference and quantization noise → increase ENOB (effective number of bits)
 - Practical DACs use practical interpolation and reconstruction filters with oversampling
- Noise Shaping
 - Use feedback to reduce oversampling factor

- □ HW 5 due Sunday
- □ Midterm Next week Th 3/5
 - During class
 - Starts at exactly 4:30pm, ends at exactly 5:50pm (80 minutes)
 - Location DRLB A2
 - Old exams posted on previous years' websites
 - Disclaimer: exams before 2020 covered more material
 - Covers Lec 1- 11
 - Closed book, one (8.5x11 front/back) page cheat sheet allowed
 - Calculators allowed, no smart phones