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ILast Time

0 Discrete Fourier Transform

= Linear convolution through circular convolution

= Overlap and add

= Overlap and save

= Circular convolution through DFT

a0 Today

s The Fast Fourier Transform
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Fast Fourier Transtform (FFT)
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Fast Fourter Transtorm Algorithms

a0 We are interested in efficient computing methods
for the DFT and inverse DFT:

N—-1

X[kl = x[n|Wy",
n=0
N—-1

x[n] = XKWy,
k=0
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Reminder: Inverse DFT via DFT

0 Recall that we can use the DFT to compute the
inverse DFT:

DFT XK} = 5 (DFTIX (K}

= Hence, we can just focus on efficient computation of the

DFT.

0 Straightforward computation of an N-point DFT
(or inverse DFT) requires N* complex
multiplications.
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Computation Order

Q Fast Fourer transform algorithms enable computation of
an N-point DFT (or inverse DFT) with the order of
just N -log, N complex multiplications.

= This can represent a huge reduction in computational

load, especially for large N.

N N2 | N-logyN | gk
16 256 64 4.0
128 | 16,384 896 18.3

1,024 | 1,048,576 | 10,240 | 102.4

8192 |67,108,864 | 106,496 | 630.2
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Computation Order

Q Fast Fourer transform algorithms enable computation of
an N-point DFT (or inverse DFT) with the order of
just N -log, N complex multiplications.

= This can represent a huge reduction in computational

load, especially for large N.

2
N N2 N -log, N N_,g’gz =
16 256 64 4.0
128 16,384 896 18.3
1,024 | 1,048,576 | 10,240 102.4
8,192 | 67,108,864 | 106,496 630.2
6 x 109 | 36 x 1012 | 135 x 10° | 2.67 x 10°
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Eigenfunction Properties

a0 Most FFT algorithms exploit the following
properties of W/

= Conjugate Symmetry

k(N—n — Kn ny\ %
WN( = WNk = (W)

= Periodicity in n and k

n k(n+N k+N)n
wikn = Wit — plkN)

s Power

W2 — WN/2
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Eigenfunction Properties

a0 Most FFT algorithms exploit the following
properties of W/

= Conjugate Symmetry

k(N—n —Kn ny\ x
Wy = Wik = (W)
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Eigenfunction Properties

a0 Most FFT algorithms exploit the following
properties of W/

= Periodicity in n and k

Wkn — Wﬁ(nJrN) _ W(k+N)n

i 2_;7 kn i 2_77 kN ) 2_ﬂ kn i 2_” nN
whn _le N e N —le W e N
N
kn kn
_W% _W%
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Eigenfunction Properties

a0 Most FFT algorithms exploit the following
properties of W/

s Power
_jZJl' 2 ]2er2 1217
, 2 _ 2T _ 2
Wo=le V| =|e =|le N2
=WN/2
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FFT Algorithms via Decimation

0 Most FFT algorithms decompose the computation of a DFT
into successtvely smaller DFT computations.

= Decimation-in-time algorithms decompose x[n] into successively
smaller subsequences.

= Decimation-in-frequency algorithms decompose X[k] into
successively smaller subsequences.

a0 Note: Assume length of x[n] 1s power of 2 (N = 2%). If not,
zero-pad to closest power of 2.
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Decimation-in-Time FF1

a0 We start with the DFT

X[k] =

Penn ESE 531 Spring 2020 — Khanna
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N—-1

Z x[n]WX", Kk

n=0

0,...
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Decimation-in-Time FFT

a0 We start with the DFT

N—-1
X[kl =) x[mMWg", k=0,...,N—1

n=0

0 Separate the sum into even and odd terms:

X[kl = > x[Wx"+ > x[n]Wy"

n even n odd
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Decimation-in-Time FFT

a0 We start with the DFT

N—-1
X[kl =) x[mMWg", k=0,...,N—1

n=0

0 Separate the sum into even and odd terms:

Xkl = ) x[nW§"+ ) x[n]Wy"

n even n odd

s These are two DFT's, each with half the number of
samples (N/2)
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Decimation-in-Time FFT

X[kl = > x[Wx"+ > x[n]Wy"

n even n odd

Let n =2r (neven) and n=2r +1 (n odd):
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Decimation-in-Time FFT

X[kl =) x[alW§"+ > x[n]Wy"

n even n odd

Let n =2r (neven) and n=2r +1 (n odd):

(N/2)-1 (N/2)-1
Xkl = 3 xRAwg + Y xer+ 1wt
r=0 r=0
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Decimation-in-Time FFT

Let n =2r (neven) and n=2r +1 (n odd):

(N/2)-1 (N/2)—1

Xkl = 3 xRAwd*+ Y xer+ 1w
r=0 r=0
(N/2)-1 (N/2)-1
= Y xRrAWFF+ W > x[2r + W™
r=0 r=0
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Adapted from M. Lustig, EECS Berkeley



Decimation-in-Time FFT

Let n = 2r (n even) and n =2r + 1 (n odd):

(N/2)-1 (N/2)—1

Xkl = Y xRAWE*+ S xer+ 1wtk
r=0 r=0
(N/2)-1 (N/2)-1

= ) xPRrAWFF+WE > x[2r + W™
r=0 r=0
Note that:

Wark — e=i(%7)(2rk) — o= (#7)k _ oy

Remember this trick, it will turn up often.
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Decimation-in-Time FFT

Let n = 2r (n even) and n =2r + 1 (n odd):

(N/2)—1 (N/2)-1
Xkl = Y xRAWE*+ S xer+ 1wtk
r=0 r=0
(N/2)-1 (N/2)—1
= ) xPRrAWFF+WE > x[2r + W™
r=0 r=0
(N/2)-1 (N/2)-1
X[kl = > xRrAWg,+ Wy Y x[2r+1]Wg,
r=0 r=0
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Decimation-in-Time FFT

N—1
X[k] = Wf', k=0,...,N-1
Let n = 2r (n even) and 1 [A] HZ_OX["] N 0,...,
(N/2)-1 (N/2)-1
X[k] = z x[2r] W'%rk + Z x[2r+ 1] ngl2r+1)k
r=0 r=0
(N/2)-1 (N/2)—1
= ) xRAWFF+ WS Y x[er + Wi
r=0 r=0
(N/2)-1 (N/2)-1
X[k] = Z X[2’]W/(/’(/2+Wﬁ Z x[2r + 1]W,(,"/2
r=0 r=0

Penn ESE 531 Spring 2020 — Khanna
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Decimation-in-Time FF1

Hence:
(N/2)-1 (N/2)—-1

XK = > xRAW, + Wk S xiar + 1w,
r=0 r=0

1>

G[k] + W{H[K], k=0,...,N—1

Penn ESE 531 Spring 2020 — Khanna
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Decimation-in-Time FF1

Hence:
(N/2)-1 (N/2)-1
X[kl = ) xRrAWg,+ Wy Y x[2r+ Wy,
r=0 r=0
A k
= G|k]+ WyHI|k], k=0,...,N—1
where we have defined:
(N/2)-1
Glk] = Z x[2r|W N/2 = DFT of even samples
r=0
(N/2)-1
H[k] £ Z x[2r+1]W,(,k/2 = DFT of odd samples
r=0

Penn ESE 531 Spring 2020 — Khanna
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Decimation-in-Time FFT

An 8 sample DFT can then be diagrammed as X[k] = G[k] + W,(‘,H[k]

G[O]
x[0] o— o X[0]

@ G;U\ /

a x[2] o— ) X[1]

S N/2 - Point

3 DFT G[VZ]\V/

c X4] o X[2]
x[6] o— o X[3]
x[1] o——] X[4]

2]

5)

g‘ X[3] o N/2 - Point X9

= x5] © DFT X[6]

je)

o
X[7] o—— X[7]

Penn ESE 531 Spring 2020 — Khanna
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‘1me FFT

Decimation-in-1

An 8 sample DFT can then be diagrammed as X[k] = G[k] + W,(;H[k]

x[0] o——

Even Samples

x[6] o—

x[1] o——

x[5] o

x[2] o——

x[4] ]

G[0]

Gﬁ\ /0 X[0]

N/2 - Point
DFT

X[1]
G;2]\\/ /
X[2]

x[3] ©—

X[3]

X[4]

N/2 - Point
DFT

Odd Samples

x[7] o—

Penn ESE 531 Spring 2020 — Khanna

X[5]

X[6]

Adapted from M. Lustig, EECS Berkeley

X[7]

X[0]=G[0]+W,H[O]
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‘'1me FFT

Decimation-in-1

An 8 sample DFT can then be diagrammed as

x[0]
x[2]
x[4]
x[6]
x[1]

Even Samples

X[3]
X[5]
x[7]

Odd Samples

Penn ESE 531 Spring 2020 — Khanna

G[O]

X[k] =

G[k] + WS HI[K]

W

o X[0]

X[1]

X[2]

X[3]

H[3/ WN

G[V1]\
N/2 - Point
DFT 6;2]\\///
G[ 3]
H[0]
- 4
Hiy”
N/2 - Point 5
DFT H[f]/

\ X4
> o X[5]

X[6]

Adapted from M. Lustig, EECS Berkeley

wy'
X[4]=G[4]+W,\*H[4]

° X[7]

27
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Decimation-in-Time FFT

Both G[k] and H|[k]| are periodic, with period N /2. For

example
(N/2)-1
Glk] £ > x2rwy,
r=0
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Decimation-in-Time FF1

Both G[k] and H|[k]| are periodic, with period N /2. For

example
(N/2)-1
Gkl 2 S xeAwg,
r=0
(N/2)-1
Glk+N/2] = Y x[rwysth?)
r=0

Penn ESE 531 Spring 2020 — Khanna
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Decimation-in-Time FFT

Both G[k] and H|[k]| are periodic, with period N /2. For

example
(N/2)-1
Gkl 2 S xeAwg,
r=0
(N/2)-1
Glk+N/2] = Y x[rwysth/?)
r=0
(N/2)-1
= Y xRAW, Wy
r=0
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Decimation-in-Time FFT

Both G[k] and H|[k]| are periodic, with period N /2. For

example
(N/2)-1
Glk] £ > x2rwy,
r=0
(N/2)-1
Glk+N/2l = Y x[zr]w,(,(/‘;+"’/2)

r=0
(N/2)-1 _1

= ) x[2r]W,(,’</2
r=0
(N/2)-1

= Z X[Q’]W/(/k/z
r=0

= GJK]

Penn ESE 531 Spring 2020 — Khanna
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: Decimation-in-Time FF1

0 So,

Glk+(N/2)] = G[K
Hlk +(N/2)] = HIK

0 The periodicity of G|k| and H[k] allows us to
further simplify. For the first N/2 points we
calculate G[k] and W *H[k], and then compute the

Sum

X[k] = G[k] + WSHIK] V{k:0< k< g}.

Penn ESE 531 Spring 2020 — Khanna
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Decimation-in-1

‘ime FFT

An 8 sample DFT can then be diagrammed as

X[k] = G[k] + WSH[K]

G[0]

x[0] o——

G;1]\

x[4] ]

emxvc/

%]

O

Q. x[2] o—

% 2l N/2 - Point
wn DFT

o

0

w

x[6] o——

x[1] o——

oO——
X[3] N/2 - Point

DFT
x[5] ©

Odd Samples

x[7] o—

Penn ESE 531 Spring 2020 — Khanna
Adapted from M. Lustig, EECS Berkeley

—» O

First N/2 DFTs
0 <k<N/2
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Decimation-in-Time FFT

0 So,

Glk +(N/2)] = GIk]
Hlk +(N/2)] = HIk]

0 The periodicity of G|k| and H[k] allows us to
further simplify. For the first N/2 points we
calculate G[k] and W *H[k], and then compute the

Sum

X[k] = G[k] + WSHIK] V{k:0< k< g}.

How does periodicity help for g’ < k< N?

Penn ESE 531 Spring 2020 — Khanna
Adapted from M. Lustig, EECS Berkeley
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: Decimation-in-Time FF1

X[k] = G[k] + WxHIK]

for%§k<N:

WiHN/D)

X[k + (N/2)] =7

Penn ESE 531 Spring 2020 — Khanna
Adapted from M. Lustig, EECS Berkeley

V{k:05k<g}.
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‘ime FFT

: Decimation-in-]

X[k] = G[k] + WxHIK]

for%§k<N:

WiHN/D)

X[k + (N/2)] =7

Penn ESE 531 Spring 2020 — Khanna
Adapted from M. Lustig, EECS Berkeley

k+N/2
WN =

V{k:05k<g}.

27
N

-

)k+N/2
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‘ime FFT

: Decimation-in-]

X[k] = G[k] + W H[K]

for%§k<N:

WiHN/D)

X[k + (N/2)] =7

Penn ESE 531 Spring 2020 — Khanna
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Wk+N/2 —

V{k:0§k<g}.
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: Decimation-in-Time FFT

X[k] = G[k] + Wy HI[K] V{k:0< k < g}.
for % < k<N: [ g \KEN2
W]([HN/Z: e_]N)
\
k+(N/2 [ 2x 21
WN+( /):? _ eijk)(eijx];[)
\
_ 2 |
X[k + (N/2)] =2 =(e . )(e’”)=—WJJ

Penn ESE 531 Spring 2020 — Khanna
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: Decimation-in-Time FF1

X[k + (N/2)] = G[k] — WxHIK]
0 We previously calculated Glk] and W *H[k].

0 Now we only have to compute their difference to
obtain the second half of the spectrum. No
additional multiplies are required.

Penn ESE 531 Spring 2020 — Khanna
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Decimation-in-Time FFT

An 8 sample DFT can then be diagrammed as

x[0] o—

Even Samples

x[6] o—

x[1] o——]

G[0]

x[2] o——

x[4] o——

G[k] + WS HI[K]

an

0
Wy

| N/2 - Point
DET G[}]\

x[3] O—]

| N/2 - Point
DFT

x[5] ©

Odd Samples

x[7] o—

Penn ESE 531 Spring 2020 — Khanna
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X[o0]
X[1]
X[2]
X[3]
X[4]
X[5]
X[6]

X[7]
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Decimation-in-Time FFT

The N-point DFT has been reduced two N/2-point DFTs,

plus N /2 complex multiplications. The 8 sample DFT is then:

x[0]
x[2]
x[4]
x[6]
x[1]

Even Samples

x[3]
x[5]
x[7]

Odd Samples

o—

(0 —

G[k]
s\ o X[o]
N/2 - Point Q X1
DFT X[2]
X[3]
X[4]
N/2 - Point XB]
DFT X[6]
X[7]

Penn ESE 531 Spring 2020 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FF1

0 Note that the inputs have been reordered so that the
outputs come out in their proper sequence.

Penn ESE 531 Spring 2020 — Khanna
Adapted from M. Lustig, EECS Berkeley



Decimation-in-Time FFT

0 Note that the inputs have been reordered so that the
outputs come out in their proper sequence.

a0 We can detine a butterfly operation, e.g., the
computation of X[0] and X[4] from G[0] and HJ[0]:

G[0] o X[0] =G[0] + WNO H[0]

H[0] ——»—o - X[4] =G[0] - WL H[o]

Penn ESE 531 Spring 2020 — Khanna
Adapted from M. Lustig, EECS Berkeley 42



Decimation-in-Time FFT

0 Note that the inputs have been reordered so that the
outputs come out in their proper sequence.

a0 We can detine a butterfly operation, e.g., the
computation of X[k| and X[k+N/2] from G[k] and

H[k]:
X[K] = G[K]+W,}H[K]
G[k] GIo] o X[0] =G[o] + Wy Hfo]
W,k
w0 X[KHN/2] = GII-W,HK]
HIk] HI0] ——>—o - X[4] =G[0] - Wy HIo]

Penn ESE 531 Spring 2020 — Khanna
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Decimation-in-Time FF1

o Still O(N?) operations.... What should we do?

x[0] o——
x[2] o—

x[4] ©——

Even Samples

x[6] o—
x[1] o——
x[3] O—

x[58] o—

Odd Samples

G[k]

.
AN
XK

N/2 - Point
DFT

x[7] o——

Penn ESE 531 Spring 2020 — Khanna

Adapted from M. Lustig, EECS Berkeley

X[0]
X[1]
X[2]
X[3]
X[4]
X[5]
X[6]

X[7]
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Decimation-in-Time FFT

a0 We can use the same approach for each of the N/2
point DFT’s. For the N = 8 case, the N/2 DFT's

look like

0 | -
X010 it - point \/"’ Glo]
x4 o—__ T o o 6]

0
Wi
X[2] o—— . © G[2]
N/4 - Point 1 1
DFT | Whe ]

-1

*Note that the inputs have been reordered again.

Penn ESE 531 Spring 2020 — Khanna
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Decimation-in-Time FFT

0 At this point for the 8 sample DFT, we can replace
the N/4 = 2 sample DFT’s with a single butterfly.

The fundamental eigenfunction is:

Wijs =Wy =Wo=e/™ =—1

Penn ESE 531 Spring 2020 — Khanna
Adapted from M. Lustig, EECS Berkeley



: Decimation-in-Time FF1

0 At this point for the 8 sample DFT, we can replace
the N/4 = 2 sample DFT’s with a single butterfly.

The fundamental eigenfunction is:

Wijs =Wy =Wo=e/™ =—1

2

X[k] x[nw

S
Il
o

[
M_

= x[0] + x[1 W
= x[0]+ x[ 1]

Penn ESE 531 Spring 2020 — Khanna
Adapted from M. Lustig, EECS Berkeley
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: Decimation-in-Time FF1

0 At this point for the 8 sample DFT, we can replace
the N/4 = 2 sample DFT’s with a single butterfly.

The fundamental eigenfunction is:

Wijs = Wajg = Wo = e /™ = —1

X[k]= _ x[nw
n=0 X[0]=
= Ex[n]Wzkn ML=
= x[0] + x[1 W
= x[0]+ x[ 1]

Penn ESE 531 Spring 2020 — Khanna
Adapted from M. Lustig, EECS Berkeley

48



: Decimation-in-Time FFT

0 At this point for the 8 sample DFT, we can replace
the N/4 = 2 sample DFT’s with a single butterfly.

The fundamental eigenfunction is:

Wijs = Wajg = Wo = e /™ = —1

XTk]= 3 a[n ]}
" X[0]=x[0]+x[1]

1 _ .
= 3 X[1]=x[0}+x[1IW,
= x[0W,” + X1
= x[0]+ x[1]W}

Penn ESE 531 Spring 2020 — Khanna
Adapted from M. Lustig, EECS Berkeley 49



: Decimation-in-Time FFT

0 At this point for the 8 sample DFT, we can replace
the N/4 = 2 sample DFT’s with a single butterfly.

The fundamental eigenfunction is:

Wijs = Wajg = Wo = e /™ = —1

X[k]= _ x[n]w,"
n=0 X[0]=x[0] + x[1]
= x[n],)" X[1]=x10] - x[1]
= [0 + x[1 )
= x[0]+ x[ 1]

Penn ESE 531 Spring 2020 — Khanna
Adapted from M. Lustig, EECS Berkeley 50



Decimation-in-Time FFT

0 At this point for the 8 sample DFT, we can replace
the N/4 = 2 sample DFT’s with a single butterfly.

The fundamental eigenfunction is:

Wijs =Wy =Wo=e/™ =—1

The diagram of this stage is then
x[0] 0 x[0] + x[4]

x[4] —»—0 —>- x[0] - x[4]

Penn ESE 531 Spring 2020 — Khanna
Adapted from M. Lustig, EECS Berkeley



Decimation-in-Time FFT

a Replace N/2-point DFT with 4-point DFT and N/4-point
DFT with butterfly operations

Glk]
0] o— ~C e
%)
2 .
§ x[2] O— N/2 - Point \\//o X[1]
>
Y 6] o—— X[3]
x[1] o—— X[4]
%]
8
& BT vz - point P
g x[5] o—— il X[6]
3
x[7] o—— X[7]

Penn ESE 531 Spring 2020 — Khanna
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Decimation-in-Time FFT

Combining all these stages, the diagram for the 8 sample DFT is:

x[0] O———

1

AZAEEAN

/.

x[4] o——

“TTE IR NN
x[6] o—l»X . 1 A v ‘v o
N

x[5] o——o0 * 0 v.v; WN2 > \o

x[3] °1_ R . : - p / —_7 \o

x[7] o—— - > N o - o)
- Pae 1 s y
4 2pt DFTs 2 4pt DFTs 8pt DFT

Penn ESE 531 Spring 2020 — Khanna
Adapted from M. Lustig, EECS Berkeley

X[o]
X[1]
X[2]
X[3]
X[4]
X[5]
X[6]

X[7]
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Decimation-in-Time FFT

Combining all these stages, the diagram for the 8 sample DFT is:
x[0] o—— o o o X[0]
e NS N
e T wIX X NN

RN XX

X[6] [0 o 3 e X[3]
-] _ 0 ""' v
AW o o Wy a X[5]
-1 " 0 " W 2 -1 \
N/2 N
x[3] o—— - i o X6]
o - w3 / \
N/2 N
x[(7] o—— - > +1 X[7]
- -1

 3=log,(N)=log,(8) stages
« 4=N/2=8/2 multiplications in each stage

Penn ESE 531 Spring 2020 — Khanna . 15t stage has trivial multiplication
Adapted from M. Lustig, EECS Berkeley



Decimation-in-Time FF1

0 In general, there are log,N stages of decimation-in-time.

0 Each stage requires N/2 complex multiplications, some of
which are trivial.

0 The total number of complex multiplications is (N/2) log,N,
or is O(N log,N)

Penn ESE 531 Spring 2020 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

0 In general, there are log,N stages of decimation-in-time.

0 Each stage requires N/2 complex multiplications, some of
which are trivial.

0 The total number of complex multiplications is (N/2) log,N,
or is O(N log,N)

0 The order of the input to the decimation-in-time FFT
algorithm must be permuted.

= First stage: split into odd and even.
s Zero low-order address bit (LSB) first

= Next stage repeats with next zero-lower bit

= Net effect is reversing the bit order of indexes

Penn ESE 531 Spring 2020 — Khanna
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Decimation-in-Time FF1

This is illustrated in the following table for N = 8.

Decimal | Binary

0 000
001
010
011
100
101
110
111

N[OOI A WN -

Penn ESE 531 Spring 2020 — Khanna
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Decimation-in-Time FF1

This is illustrated in the following table for N = 8.

Decimal | Binary | Bit-Reversed Binary
0 000 000
1 001 100
2 010 010
3 011 110
4 100 001
9 101 101
6 110 011
7 111 111

Penn ESE 531 Spring 2020 — Khanna
Adapted from M. Lustig, EECS Berkeley



Decimation-in-Time FF1

This is illustrated in the following table for N = 8.

Decimal | Binary | Bit-Reversed Binary | Bit-Reversed Decimal
0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

Penn ESE 531 Spring 2020 — Khanna
Adapted from M. Lustig, EECS Berkeley



‘ime FF’

Decimation-in-"

Combining all these stages, the diagram for the 8 sample DFT is:

O

~__

AN
DX X

Penn ESE 531 Spring 2020 — Khanna
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X[o]
X[1]
X[2]
X[3]
X[4]
X[5]
X[6]

X[7]
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Decimation-in-Frequency FF'T

The DFT s
N—1

X[kl =Y x[nWgk

n=0

Penn ESE 531 Spring 2020 — Khanna
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Decimation-in-Frequency FF'T

The DFT s
N—1

X[kl =Y x[nWgk

n=0

If we only look at the even samples of X[k], we can write k = 2r,

N—-1
X[2r] = 3 x[nwy?"

n=0

Penn ESE 531 Spring 2020 — Khanna
Adapted from M. Lustig, EECS Berkeley

62



Decimation-in-Frequency FF'T

The DFT is
N—1

X[kl =Y x[nWgk

n=0

If we only look at the even samples of X[k], we can write k = 2r,

N—-1
X[2r] = 3 x[nwy?"

n=0

We split this into two sums, one over the first N/2 samples, and
the second of the last N/2 samples.

(N/2)-1 N-1
XRrl= Y xaWim+ S xin]W"
n=0 n=N/2

Penn ESE 531 Spring 2020 — Khanna
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Decimation-in-Frequency FF'T

The DFT is
N—1

X[kl =Y x[nWgk

n=0

If we only look at the even samples of X[k], we can write k = 2r,

N—-1
X[2r] = 3 x[nwy?"

n=0

We split this into two sums, one over the first N/2 samples, and
the second of the last N/2 samples.

(N/2)—1 (N/2)-1
X2rl= 3 Wi+ 3 xin+ N/2qwg )
n=0 n=0

Penn ESE 531 Spring 2020 — Khanna
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Decimation-in-Frequency FF'T

2r(n+N/2) _ rn rn _ rn
But W}, = W WY = W™ = Wy,
We can then write

Penn ESE 531 Spring 2020 — Khanna
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Decimation-in-Frequency FF'T

But W2'("+N/2) W2rn Wll\‘IN_ W2rn — WI(In/2
We can then write

(N/2)-1 (N/2)-1
X[2r] = > x[AWF"+ ) x[n+N|

n=0 n=0

(N/2)-1 (N/2)-1

= Z x[n|WZ™ + Z x[n+ N/3

n=0 n=0

Penn ESE 531 Spring 2020 — Khanna
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Decimation-in-Frequency FF'T

But W2'("+N/2) W2rn Wll\‘IN_ W2rn — WI(In/2
We can then write

(N/2)-1 (N/2)-1
Xirl = 3 xAWEm+ Y xln+ /2wt
n=0 n=0
(N/2)-1 (N/2)-1
= > «nWEm+ Y x[n+ N/AWET
n=0 n=0
(N/2)-1

Z (x[n] +x[n+ N/2]) W
n=0
This is the N/2-length DFT of first and second half of x|n]

summed.
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Adapted from M. Lustig, EECS Berkeley

67



Decimation-in-Frequency FF'T

X[2r] DFT w {(x[n] + x[n+ N/2])}
X[2r+1] = DFT% {(x[n] —x[n+ N/2]) Wg}

(By a similar argument that gives the odd samples)

Penn ESE 531 Spring 2020 — Khanna
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Decimation-in-Frequency FF'T

X[2r] DFT w {(x[n] + x[n+ N/2])}
X[2r+1] = DFT% {(x[n] —x[n+ N/2]) Wg}

(By a similar argument that gives the odd samples)

o Continue the same approach on the N/2 DFTs, and N /4
DFTs until we reach the 2-point DFT, which 1s a simple
butterfly operation

Penn ESE 531 Spring 2020 — Khanna
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Decimation-in-Frequency FFT

The diagram for and 8-point decimation-in-frequency DFT is as
follows

X[0]

X[4]

X[2]

X[6]

X[1]

X[5]

X[3]

This is just the decimation-in-time algorithm reversed!
The inputs are in normal order, and the outputs are bit reversed.

Penn ESE 531 Spring 2020 — Khanna
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Decimation-in-Time FFT

Combining all these stages, the diagram for the 8 sample DFT is:
x[0] o—— o o o X[0]
e NS N
e T wIX X NN

RN XX

X[6] [0 o 3 e X[3]
-] _ 0 ""' v
AW o o Wy a X[5]
-1 " 0 " W 2 -1 \
N/2 N
x[3] o—— - i o X6]
o - w3 / \
N/2 N
x[(7] o—— - > +1 X[7]
- -1

 3=log,(N)=log,(8) stages
« 4=N/2=8/2 multiplications in each stage

Penn ESE 531 Spring 2020 — Khanna . 15t stage has trivial multiplication
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Non-Power-of-2 FFT's

0 A similar argument applies for any length DFT, where the
length N is a composite number

a0 For example, if N=06, with decimation-in-frequency you
could compute three 2-point DFTs followed by two 3-point

DFTs

X[0] 9| 2.point [° ° ©  X[0]
DFT 0 .

X[3] We ot xp2]

X[1] 9 2.point ___° XM
DFT

x[4] °  X[1]
DFT W62

x[5] ¢© ©  X[5]

Penn ESE 531 Spring 2020 — Khanna
Adapted from M. Lustig, EECS Berkeley



Example: Non-Power-of-2 FFT's

X X X X X X
Iml ILI le INI IHI IOI

Penn ESE 531 Spring 2020 - Khanna

6-pt DFT

IXI IXI IXI IXI IXI IXI
Iml ILI le INI IHI IOI
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Decimation-in-Frequency FF'T

X|[2r]
X[2r + 1]

DFT n {(x[n] + x[n + N/2])}
DFT u {(x[n] —x[n + N/2]) Wi}

Penn ESE 531 Spring 2020 — Khanna
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Example: Non-Power-of-2 FFT's

—&

x[0] . /

X[1]. L
//" DFT

127

z[3]—/ / /:

x[4] ../ / ! ?IS_FI?IE

x[S]/

Penn ESE 531 Spring 2020 - Khanna
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Decimation-in-Frequency FF'T

X[2r] DFT y {(x[n] + x[n + N/2])}
X[2r+1] = DFTu{(x[n] —x[n+ N/2]) Wi}

Penn ESE 531 Spring 2020 — Khanna
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Example: Non-Power-of-2 FFT's

<10l \ / X[0;
X[1] 3L | yro
X |

X[3]

4] - o | X3
X[5]‘Z \_)1 X[5.

Penn ESE 531 Spring 2020 - Khanna
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Example: Non-Power-of-2 FFT's

(0] ‘\ / X[0:
X[1] 3Pty
X[Z].ﬂ\\\‘j><f/’///,* " X4,

X[3]

{4145 oFr | X
X[S]l \_,, X[5:

Penn ESE 531 Spring 2020 - Khanna
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Example: Non-Power-of-2 FFT's

x[0] 2-pt 1 I
DFT 3-pt
X3 / DT
X[1] 2-pt
X[4] DFT
3-pt
X[2] 2-pt DFT
X[5] DFT

Penn ESE 531 Spring 2020 - Khanna

79



Example: Non-Power-of-2 FFT's

x[0]
X[3]
X[1]
X[4]
X[2]

X[5]

2-pt 1 1
DFT 3-pt
DFT
2-pt
DFT
3-pt
2-pt W DFT
DFT >

Penn ESE 531 Spring 2020 - Khanna
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Non-Power-of-2 FFT's

0 Good component DFTs are available for lengths up to

20(1sh). Many of these exploit the structure for that specific
length

= For example, a factor of

Wt = eI TN/ = =i =

Just swaps the real and imaginary components of a complex number.

Hence a DFT of length 4 doesn’t require any complex multiples.

= Half of the multiples of an 8-point DFT also don’t require
multiplication

= Composite length FF'Ts can be very efficient for any length that
factors into terms of this order

Penn ESE 531 Spring 2020 — Khanna
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Non-Power-of-2 FFT's

0 For example N = 693 factors into
= N =()9)11)
0 each of which can be implemented efficiently. We
would perform
= 9x 11 DFTs of length 7
= 7x 11 DFTs of length 9, and
= 7x9DFTs of length 11

Penn ESE 531 Spring 2020 — Khanna
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Non-Power-of-2 FFT's

0 Historically, the power-of-two FFTs were much
faster (better written and implemented).

0 For non-power-of-two length, it was taster to zero
pad to power of two.

0 Recently this has changed. The free FFT'W package
implements very etficient algorithms for almost any
filter length. Matlab has used FF'TW since version 6

Penn ESE 531 Spring 2020 — Khanna
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FFT Computation Time

FFT computation time (Matlab FFTW) on MacBookPro
0.015 T T 1 1

'l

run time [rs]

0.005

50 100 150 200 250
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Run Time (sec)

Beyond NlogN

10

e
-

0.01 [

0.001 ¢

0.0001

1e-05

a0 What if the signal x|n] has a k sparse frequency

= A. Gilbert et. al, “Near-optimal sparse Fourier representations via

= H. Hassanieh et. al, “Nearly Optimal Sparse Fourter Transform”

sampling

Othetrs...

= O(K Log N) instead of O(N Log N)

Run Time vs Signal Size (k=50)

tsFFT 3.0 (Exact)
EETWHH e s e
AAFFT 0.9 s
r_ -
i"
-“'
-""
!—x'-'
."‘
o
I T o T T
F ."r.-’
1 o
3"
210 11 512 13 14 H15 ,16 H17 518 519 520 521 22 523 24

Signal Size (n)

10

—_

e
.

0.01

Run Time (sec)

°
g

Run Time vs Signal Sparsity (N=222)

sFFT 3.0 (Exact)

FFTW
AAFFT 0.9

26

27

28

29

210

211

212

213

Sparsity (K)

From: http://groups.csail.mit.edu/netmit/sFFT/paper.html

214

215

216

217

218
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Big Ideas

0 Fast Fourier Transform

Enable computation of an N-point DFT (or DFT!) with
the order of just N -log, N complex multiplications.

Most FFT algorithms decompose the computation of a DFT into
successively smaller DFT computations.
= Decimation-in-time algorithms

= Decimation-in-frequency
Historically, power-of-2 DFT's had highest etficiency

Modern computing has led to non-power-of-2 FFT's with
high etficiency

Sparsity leads to reduced computation on order K -logN
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Admin

a0 HW 8 due Sunday
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