ESE 531: Digital Signal Processing

Lec 2: January 21, 2020 Discrete Time Signals and Systems

Lecture Outline

- Discrete Time Signals
- Signal Properties
- Discrete Time Systems

Discrete Time Signals

Signals

Signal (n): A detectable physical quantity ... by which messages or information can be transmitted (Merriam-Webster)

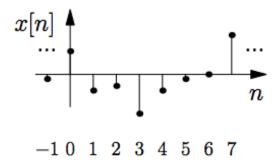
- Signals carry information
- Examples:
 - Speech signals transmit language via acoustic waves
 - Radar signals transmit the position and velocity of targets via electromagnetic waves
 - Electrophysiology signals transmit information about processes inside the body
 - Financial signals transmit information about events in the economy
- □ Signal processing systems manipulate the information carried by signals

Signals are Functions

DEFINITION

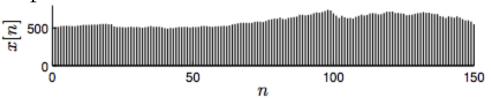
A signal is a function that maps an independent variable to a dependent variable.

- Signal x[n]: each value of n produces the value x[n]
- □ In this course we will focus on **discrete-time** signals:
 - Independent variable is an **integer**: $n \in \mathbb{Z}$ (will refer to n as <u>time</u>)
 - Dependent variable is a real or complex number: $x[n] \in R$

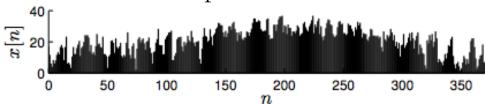


A Menagerie of Signals

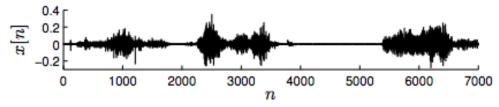
□ Google Share daily share price for 5 months



□ Temperature at Houston International Airport in 2013

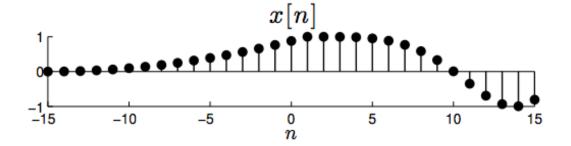


■ Excerpt from a reading of Shakespeare's *Hamlet*

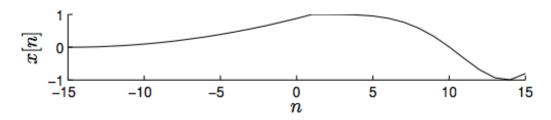


Plotting Signals Correctly

- In a discrete-time signal x[n], the independent variable n is discrete
- To plot a discrete-time signal in a program like Matlab, you should use the **stem** or similar command and not the **plot** command
- Correct:

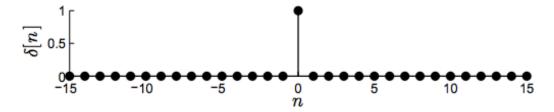


Incorrect:

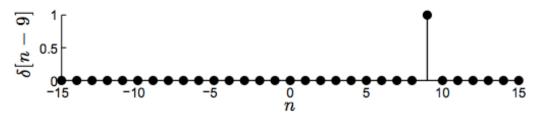


DEFINITION

The **delta function** (aka unit impulse) $\delta[n] = \begin{cases} 1 & n=0 \\ 0 & \text{otherwise} \end{cases}$



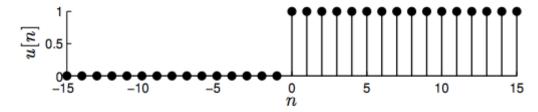
The shifted delta function $\delta[n-m]$ peaks up at n=m; here m=9



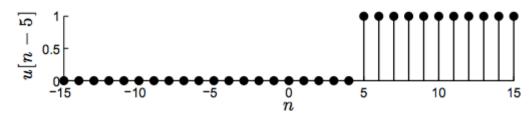
Unit Step

DEFINITION

The **unit step** $u[n] = \begin{cases} 1 & n \ge 0 \\ 0 & n < 0 \end{cases}$



The shifted unit step u[n-m] jumps from 0 to 1 at n=m; here m=9

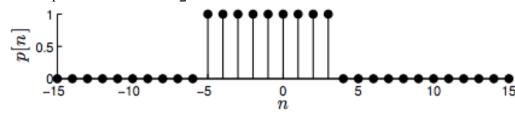


Unit Pulse

DEFINITION

The **unit pulse** (aka boxcar)
$$p[n] = \begin{cases} 0 & n < N_1 \\ 1 & N_1 \le n \le N_2 \\ 0 & n > N_2 \end{cases}$$

• Ex: p[n] for $N_1 = -5$ and $N_2 = 3$



One of many different formulas for the unit pulse

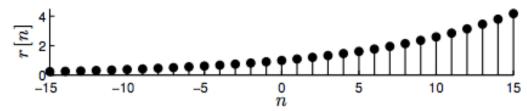
$$p[n] = u[n - N_1] - u[n - (N_2 + 1)]$$

Real Exponential

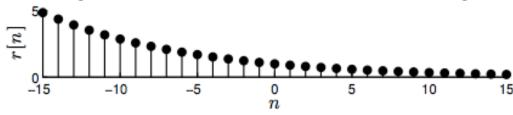
DEFINITION

The real exponential $r[n] = a^n$, $a \in \mathbb{R}$, $a \ge 0$

For a > 1, r[n] shrinks to the left and grows to the right; here a = 1.1

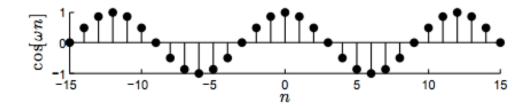


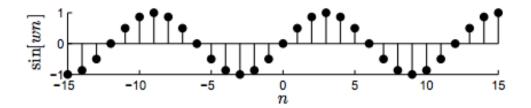
For 0 < a < 1, r[n] grows to the left and shrinks to the right; here a = 0.9



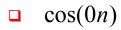
Sinusoids

- There are two natural real-value sinusoids: $cos(\omega n + \phi)$ and $sin(\omega n + \phi)$
- **Frequency:** ω (units: radians/sample)
- **Phase:** ϕ (units: radians)



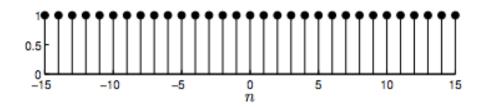


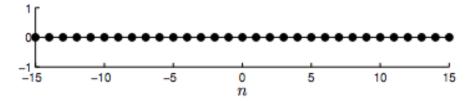
Sinusoid Examples

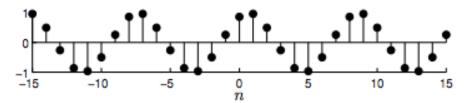


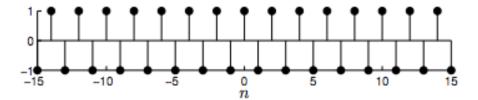
$$\Box$$
 $\sin(0n)$

 $\cos(\pi n)$









Sinusoid in Matlab

☐ It's easy to play around in Matlab to get comfortable with the properties of sinusoids

```
N=36;

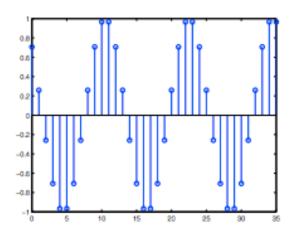
n=0:N-1;

omega=pi/6;

phi=pi/4;

x=cos(omega*n+phi);

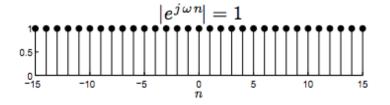
stem(n,x)
```

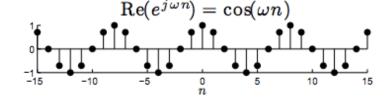


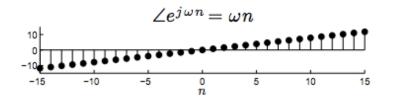
Complex Sinusoid

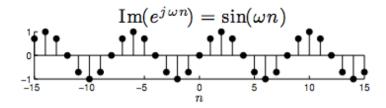
□ The complex-value sinusoid combines both the cos and sin terms using Euler's identity:

$$e^{j(\omega n + \phi)} = \cos(\omega n + \phi) + j\sin(\omega n + \phi)$$



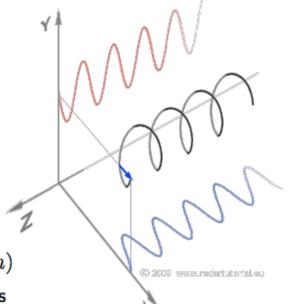






Complex Sinusoid as Helix

$$e^{j(\omega n + \phi)} = \cos(\omega n + \phi) + j\sin(\omega n + \phi)$$



- A complex sinusoid is a **helix** in 3D space $(Re{}\}, Im{}\}, n)$
 - Real part (cos term) is the projection onto the Re{} axis
 - Imaginary part (\sin term) is the projection onto the $Im\{\}$ axis
- $lue{}$ Frequency ω determines rotation speed and direction of helix
 - $\omega > 0 \Rightarrow$ anticlockwise rotation
 - $\omega < 0 \Rightarrow$ clockwise rotation

Animation: https://upload.wikimedia.org/wikipedia/commons/4/41/Rising_circular.gif

Negative Frequency?

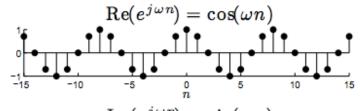
■ Negative frequency is nothing to be afraid of!

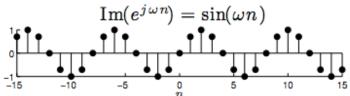
Negative Frequency

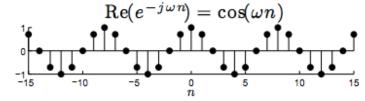
■ Negative frequency is nothing to be afraid of! Consider a sinusoid with a negative frequency:

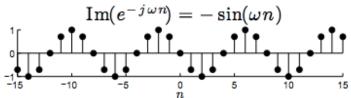
$$e^{j(-\omega)n} = e^{-j\omega n} = \cos(-\omega n) + j\sin(-\omega n) = \cos(\omega n) - j\sin(\omega n)$$

- Also note: $e^{j(-\omega)n} = e^{-j\omega n} = (e^{j\omega n})^*$
- □ **Takeaway:** negating the frequency is equivalent to complex conjugating a complex sinusoid—flips the sign of the imaginary sin term









Phase of a Sinusoid

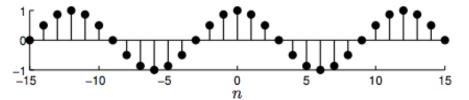
 ϕ is a (frequency independent) shift that is referenced to one period of oscillation

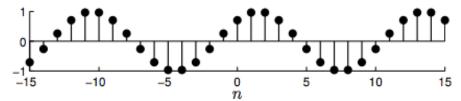
$$\cos\left(\frac{\pi}{6}n-0\right)$$

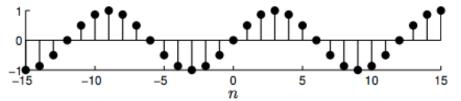
$$\cos\left(\frac{\pi}{6}n - \frac{\pi}{4}\right)$$

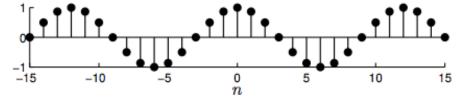
$$\cos\left(\tfrac{\pi}{6}n-\tfrac{\pi}{2}\right)=\sin\left(\tfrac{\pi}{6}n\right)$$

$$\cos\left(\frac{\pi}{6}n - 2\pi\right) = \cos\left(\frac{\pi}{6}n\right)$$









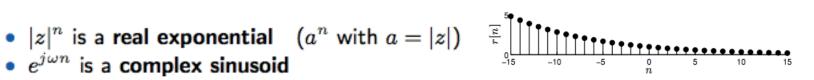
- Complex sinusoid $e^{j(\omega n + \phi)}$ is of the form $e^{\text{Purely Imaginary Numbers}}$
- \Box Generalize to $e^{\mathrm{General\ Complex\ Numbers}}$

- \Box Complex sinusoid $e^{j(\omega n + \phi)}$ is of the form $e^{\text{Purely Imaginary Numbers}}$
- □ Generalize to e^{General Complex Numbers}
- ullet Consider the general complex number $z=|z|\,e^{j\omega}$, $z\in\mathbb{C}$
 - |z| = magnitude of z
 - $\omega = \angle(z)$, phase angle of z
 - Can visualize $z \in \mathbb{C}$ as a **point** in the **complex plane**

- Complex sinusoid $e^{j(\omega n + \phi)}$ is of the form $e^{\text{Purely Imaginary Numbers}}$
- Generalize to $e^{\text{General Complex Numbers}}$
- Consider the general complex number $z = |z| e^{j\omega}$, $z \in \mathbb{C}$
 - |z| = magnitude of z
 - $\omega = \angle(z)$, phase angle of z
 - Can visualize $z \in \mathbb{C}$ as a **point** in the **complex plane**
- Now we have

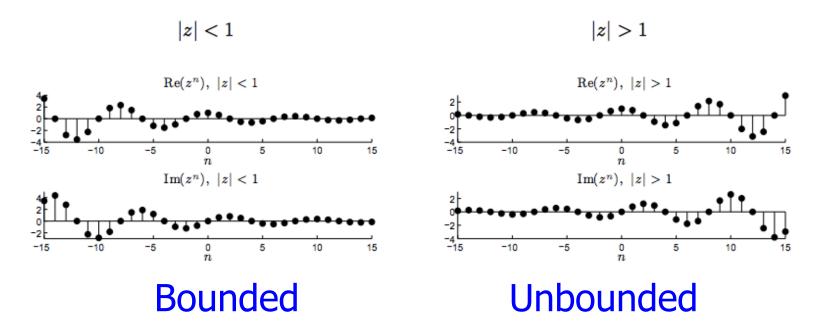
$$z^n = (|z|e^{j\omega})^n = |z|^n (e^{j\omega})^n = |z|^n e^{j\omega n}$$

- $e^{j\omega n}$ is a complex sinusoid



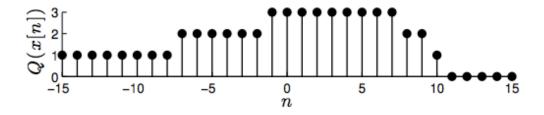
$$z^n = (|z|e^{j\omega n})^n = |z|^n e^{j\omega n}$$

- $|z|^n$ is a real exponential envelope $(a^n \text{ with } a = |z|)$
- \Box $e^{j\omega n}$ is a complex sinusoid



Digital Signals

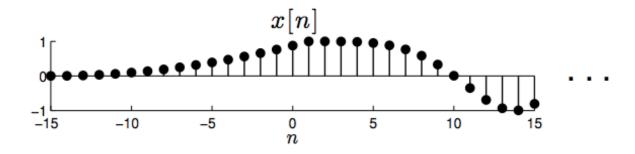
- □ **Digital signals** are a special subclass of discrete-time signals
 - Independent variable is still an integer: $n \in \mathbb{Z}$
 - Dependent variable is from a finite set of integers: $x[n] \in \{0, 1, ..., D-1\}$
 - Typically, choose $D=2^q$ and represent each possible level of x[n] as a digital code with q bits
 - Ex. Digital signal with q=2 bits --> D=4 levels



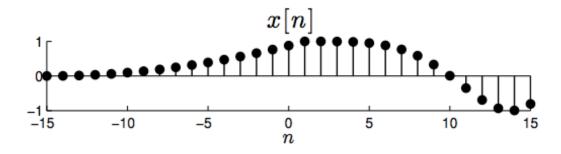
Signal Properties

Finite/Infinite Length Sequences

□ An **infinite-length** discrete-time signal x[n] is defined for all integers $-\infty < n < \infty$



A finite-length discrete-time signal x[n] is defined only for a finite range of $N_1 \le n \le N_2$

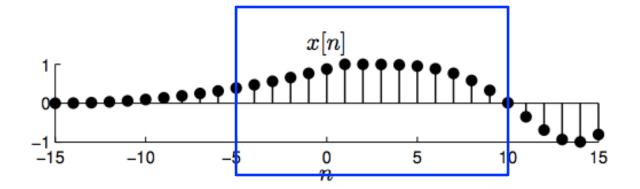


Important: a finite-length signal in undefined for $n < N_1$ and $n > N_2$

Windowing

□ Windowing converts a longer signal into a shorter one

$$y[n] = egin{cases} x[n] & N_1 \le n \le N_2 \\ 0 & \text{otherwise} \end{cases}$$

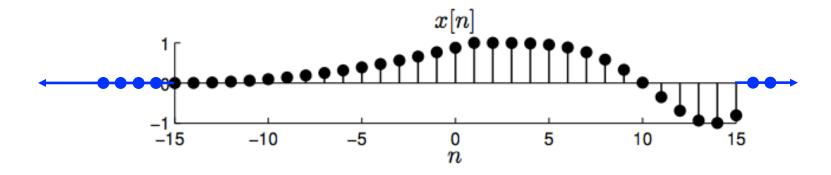


Generally, we define a window signal, w[n], with some finite length and multiply to implement the windowing: y[n]=w[n]*x[n]

Zero Padding

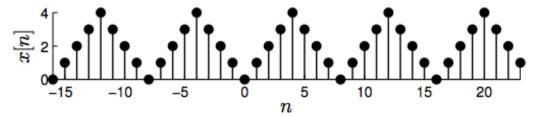
- Converts a shorter signal into a larger one
- Say x[n] is defined for $N_1 \le n \le N_2$

$$y[n] = \begin{cases} 0 & N_0 \le n < N_1 \\ x[n] & N_1 \le n \le N_2 \\ 0 & N_2 < n \le N_3 \end{cases}$$



A discrete-time signal is **periodic** if it repeats with period $N \in \mathbb{Z}$:

$$x[n+mN] = x[n] \quad \forall m \in \mathbb{Z}$$



Notes:

- lacktriangle The period N must be an integer
- A periodic signal is infinite in length

DEFINITION

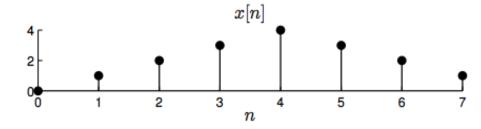
A discrete-time signal is aperiodic if it is not periodic

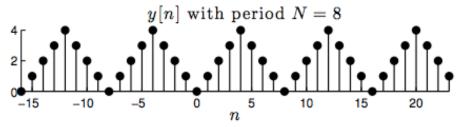
Periodization

- Converts a finite-length signal into an infinite-length, periodic signal
- □ Given finite-length x[n], replicate x[n] periodically with period N

$$y[n] = \sum_{m=-\infty}^{\infty} x[n-mN], \quad n \in \mathbb{Z}$$

= $\cdots + x[n+2N] + x[n+N] + x[n] + x[n-N] + x[n-2N] + \cdots$

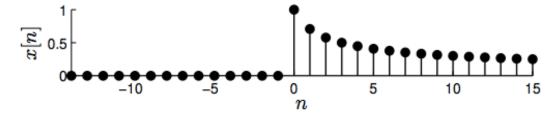




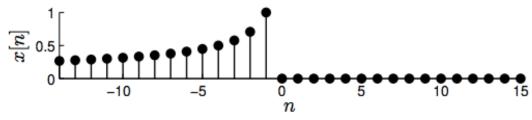
Causal Signals

DEFINITION

A signal x[n] is **causal** if x[n] = 0 for all n < 0.



A signal x[n] is **anti-causal** if x[n] = 0 for all $n \ge 0$

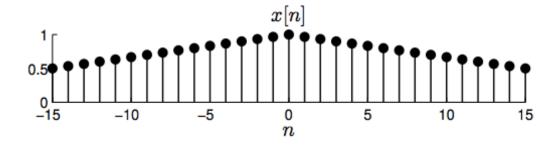


ightharpoonup A signal x[n] is **acausal** if it is not causal

Even Signals

DEFINITION

A real signal x[n] is **even** if x[-n] = x[n]

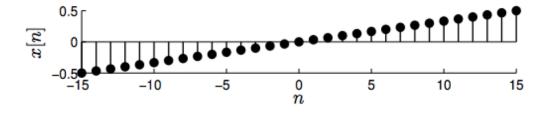


 \Box Even signals are symmetrical around the point n = 0

Odd Signals

DEFINITION

A real signal x[n] is odd if x[-n] = -x[n]



 \Box Odd signals are anti-symmetrical around the point n = 0

Signal Decomposition

Useful fact: Every signal x[n] can be decomposed into the sum of its even part and its odd part

Even part:
$$e[n] = \frac{1}{2} (x[n] + x[-n])$$
 (easy to verify that $e[n]$ is even)

Odd part:
$$o[n] = \frac{1}{2} \left(x[n] - x[-n] \right)$$
 (easy to verify that $o[n]$ is odd)

Signal Decomposition

■ Useful fact: Every signal x[n] can be decomposed into the sum of its even part and its odd part

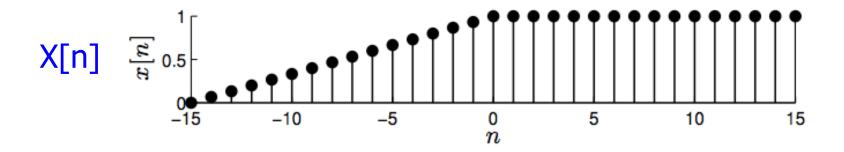
Even part:
$$e[n] = \frac{1}{2} (x[n] + x[-n])$$
 (easy to verify that $e[n]$ is even)

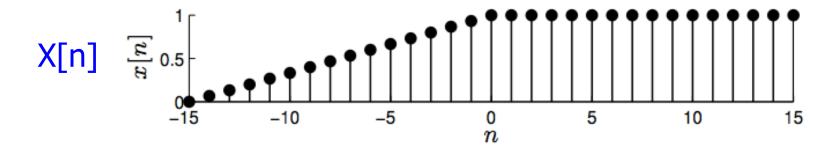
Odd part:
$$o[n] = \frac{1}{2} \left(x[n] - x[-n] \right)$$
 (easy to verify that $o[n]$ is odd)

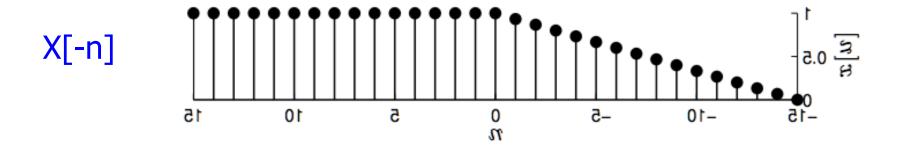
Verify the decomposition:

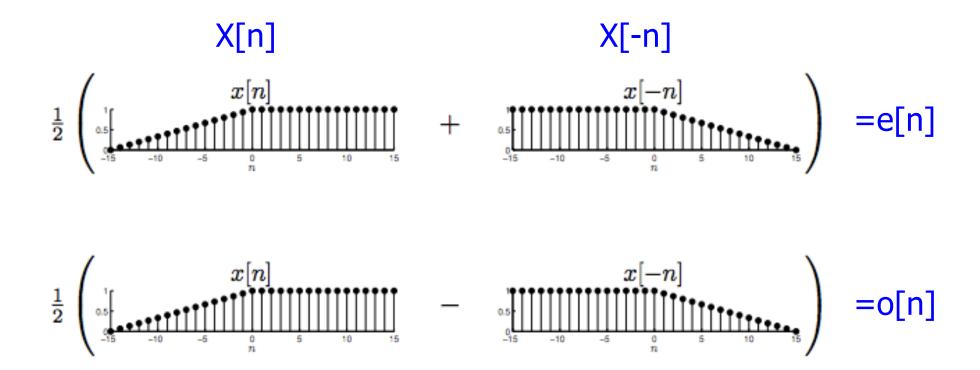
$$\begin{array}{lcl} e[n] + o[n] & = & \frac{1}{2}(x[n] + x[-n]) + \frac{1}{2}(x[n] - x[-n]) \\ \\ & = & \frac{1}{2}(x[n] + x[-n] + x[n] - x[-n]) \\ \\ & = & \frac{1}{2}(2x[n]) = x[n] \quad \checkmark \end{array}$$

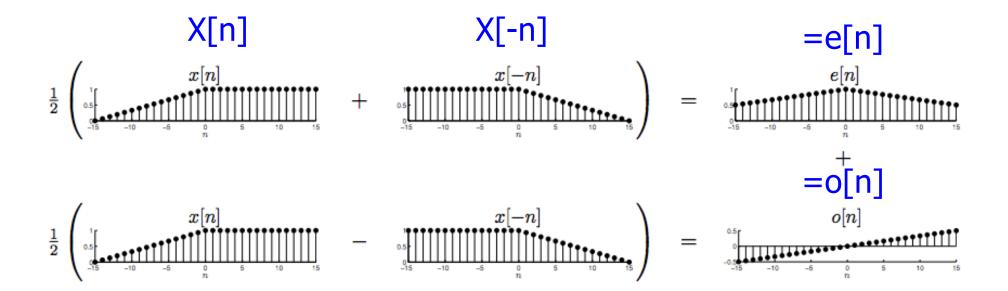
Decomposition Example

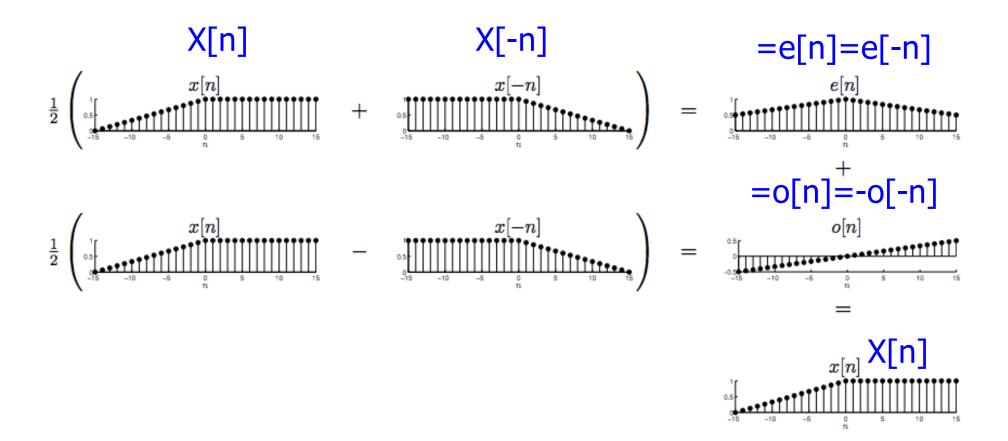












Discrete-Time Sinusoids

- Discrete-time sinusoids $e^{j(\omega n + \phi)}$ have two counterintuitive properties
- $lue{}$ Both involve the frequency ω
- □ Weird property #1: Aliasing
- **Weird property #2**: Aperiodicity

Property #1: Aliasing of Sinusoids

Consider two sinusoids with two different frequencies

$$\omega \Rightarrow x_1[n] = e^{j(\omega n + \phi)}$$
 $\omega + 2\pi \Rightarrow x_2[n] = e^{j((\omega + 2\pi)n + \phi)}$

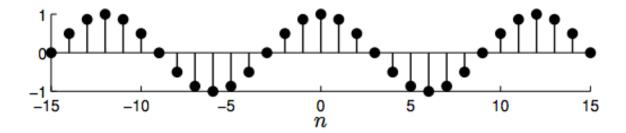
But note that

$$x_2[n] = e^{j((\omega + 2\pi)n + \phi)} = e^{j(\omega n + \phi) + j2\pi n} = e^{j(\omega n + \phi)} \ e^{j2\pi n} = e^{j(\omega n + \phi)} = x_1[n]$$

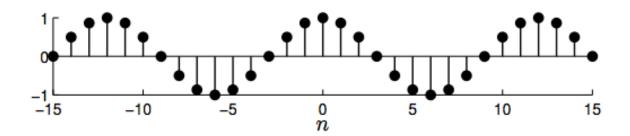
- \Box The signals x_1 and x_2 have different frequencies but are **identical!**
- \square We say that x_1 and x_2 are aliases; this phenomenon is called aliasing
- Note: Any integer multiple of 2π will do; try with $x_3[n] = e^{j((\omega + 2\pi m)n + \phi)}$, $m \in \mathbb{Z}$

Aliasing Example

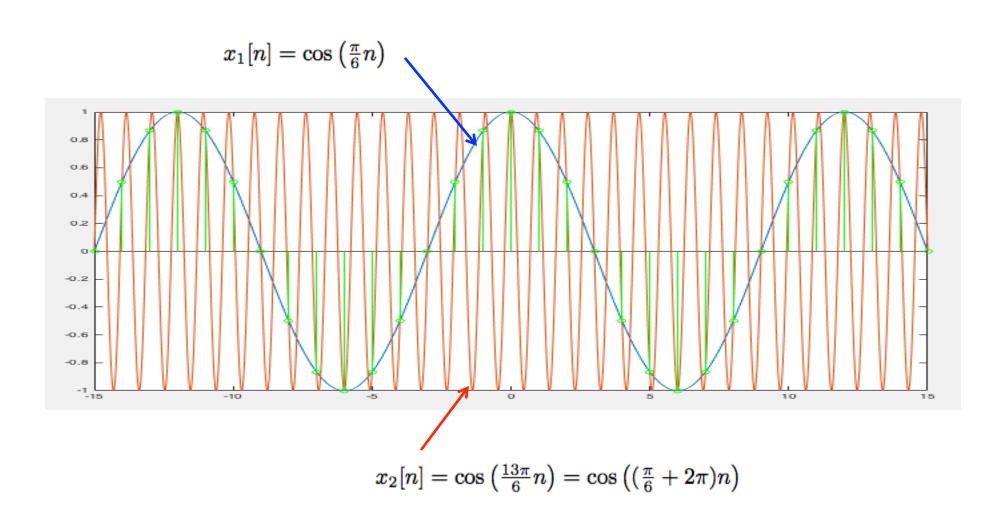
$$x_1[n] = \cos\left(\frac{\pi}{6}n\right)$$



$$x_2[n] = \cos\left(\frac{13\pi}{6}n\right) = \cos\left(\left(\frac{\pi}{6} + 2\pi\right)n\right)$$



Aliasing Example



Alias-Free Frequencies

Since

$$x_3[n] = e^{j(\omega + 2\pi m)n + \phi} = e^{j(\omega n + \phi)} = x_1[n] \quad \forall m \in \mathbb{Z}$$

- the only frequencies that lead to unique (distinct) sinusoids lie in an interval of length 2π
- □ Two intervals are typically used in the signal processing literature (and in this course)

$$0 \leq \omega < 2\pi$$

$$-\pi < \omega \le \pi$$

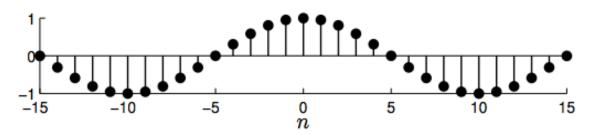
Which is higher in frequency?

 \Box cos(π n) or cos($3\pi/2$ n)?

Low and High Frequencies

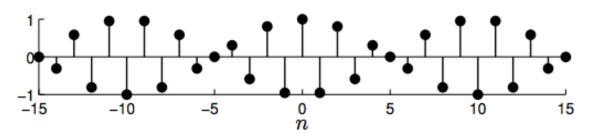
Low frequencies: ω close to 0 or 2π radians

Ex: $\cos\left(\frac{\pi}{10}n\right)$

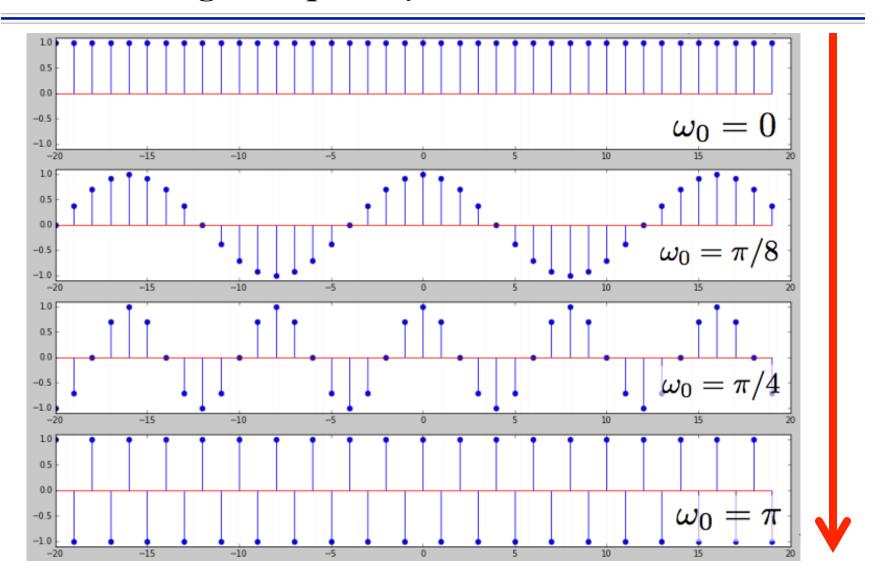


High frequencies: ω close to π or $-\pi$ radians

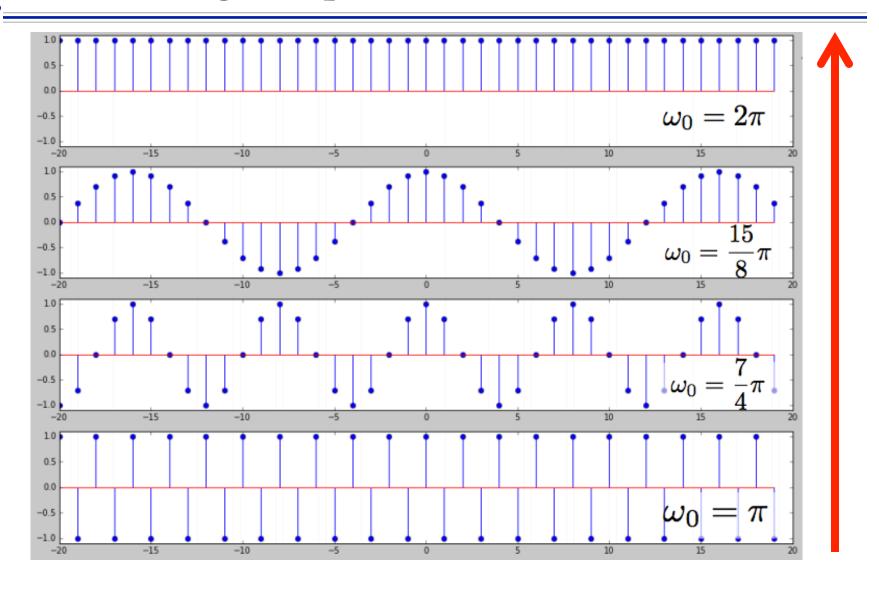
Ex: $\cos\left(\frac{9\pi}{10}n\right)$



Increasing Frequency



Decreasing Frequency



Property #2: Periodicity of Sinusoids

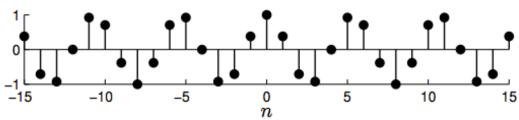
■ Consider $x_1[n] = e^{j(\omega n + \phi)}$ with frequency $\omega = \frac{2\pi k}{N}$, $k, N \in \mathbb{Z}$ (harmonic frequency)

Property #2: Periodicity of Sinusoids

- Consider $x_1[n] = e^{j(\omega n + \phi)}$ with frequency $\omega = \frac{2\pi k}{N}$, $k, N \in \mathbb{Z}$ (harmonic frequency)
- It is easy to show that $\underline{x_1}$ is periodic with period N, since

$$x_1[n+N] = e^{j(\omega(n+N)+\phi)} = e^{j(\omega n + \omega N + \phi)} = e^{j(\omega n + \phi)} \ e^{j(\omega N)} = e^{j(\omega n + \phi)} \ e^{j(\frac{2\pi k}{N}N)} = x_1[n] \ \checkmark$$

Ex: $x_1[n] = \cos(\frac{2\pi 3}{16}n)$, N = 16



■ Note: x_1 is periodic with the (smaller) period of $\frac{N}{k}$ when $\frac{N}{k}$ is an integer

Aperiodicity of Sinusoids

lacksquare Consider $x_2[n]=e^{j(\omega n+\phi)}$ with frequency $\omega
eq rac{2\pi k}{N}$, $k,N\in\mathbb{Z}$ (not harmonic frequency)

Aperiodicity of Sinusoids

- Consider $x_2[n] = e^{j(\omega n + \phi)}$ with frequency $\omega \neq \frac{2\pi k}{N}$, $k, N \in \mathbb{Z}$ (not harmonic frequency)
- Is x_2 periodic?

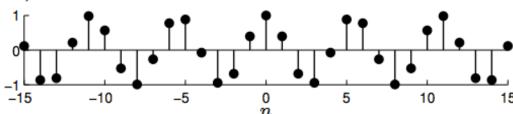
$$x_2[n+N] = e^{j(\omega(n+N)+\phi)} = e^{j(\omega n+\omega N+\phi)} = e^{j(\omega n+\phi)} \ e^{j(\omega N)} \neq x_1[n] \quad \text{NO!}$$

Aperiodicity of Sinusoids

- Consider $x_2[n] = e^{j(\omega n + \phi)}$ with frequency $\omega \neq \frac{2\pi k}{N}$, $k, N \in \mathbb{Z}$ (not harmonic frequency)
- Is x_2 periodic?

$$x_2[n+N] = e^{j(\omega(n+N)+\phi)} = e^{j(\omega n + \omega N + \phi)} = e^{j(\omega n + \phi)} e^{j(\omega N)} \neq x_1[n] \quad \text{NO}!$$

Ex: $x_2[n] = \cos(1.16 n)$



■ If its frequency ω is not harmonic, then a sinusoid <u>oscillates</u> but is <u>not periodic!</u>

Harmonic Sinusoids

$$e^{j(\omega n + \phi)}$$

 Semi-amazing fact: The only periodic discrete-time sinusoids are those with harmonic frequencies

$$\omega = \frac{2\pi k}{N}, \quad k, N \in \mathbb{Z}$$

- Which means that
 - Most discrete-time sinusoids are not periodic!
 - The harmonic sinusoids are somehow magical (they play a starring role later in the DFT)

 $\cos(\pi/5n)$

□ What are N and k? (I.e How many samples is one period?

- - N=14, k=5
 - $\cos(5/14*2\pi n)$
 - Repeats every N=14 samples
- $\cos(\pi/5n)$
 - N=10, k=1
 - $\cos(1/10*2\pi n)$
 - Repeats every N=10 samples

- - N=14, k=5
 - $\cos(5/14*2\pi n)$
 - Repeats every N=14 samples
- - N=10, k=1
 - $\cos(1/10*2\pi n)$
 - Repeats every N=10 samples
- $\Box \cos(5/7\pi n) + \cos(\pi/5n)$?

- $\cos(5/7\pi n) + \cos(\pi/5n) ?$
 - $N=SCM\{10,14\}=70$
 - $\cos(5/7*\pi n) + \cos(\pi/5n)$
 - $n=N=70 \rightarrow \cos(5/7*70\pi) + \cos(\pi/5*70) = \cos(25*2\pi) + \cos(7*2\pi)$

Discrete-Time Systems

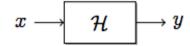
NOLLINIA

A discrete-time system ${\mathcal H}$ is a transformation (a rule or formula) that maps a discrete-time input signal x into a discrete-time output signal y

$$y = \mathcal{H}\{x\}$$
 $x \longrightarrow \mathcal{H} \longrightarrow y$

- Systems manipulate the information in signals
- Examples:
 - A speech recognition system converts acoustic waves of speech into text
 - A radar system transforms the received radar pulse to estimate the position and velocity of targets
 - A fMRI system transforms measurements of electron spin into voxel-by-voxel estimates of brain activity
 - A 30 day moving average smooths out the day-to-day variability in a stock price

Signal Length and Systems



- □ Recall that there are two kinds of signals: infinite-length and finite-length
- Accordingly, we will consider two kinds of systems:
 - Systems that transform an infinite-length signal x into an infinite-length signal y
 - Systems that transform a length-N signal x into a length-N signal y
- □ For generality, we will assume that the input and output signals are complex valued

System Examples

Identity

Scaling

Offset

Square signal

Shift

Decimate

Square time

$$y[n] = x[n] \quad \forall n$$

$$y[n] = 2x[n] \quad \forall n$$

$$y[n] = x[n] + 2 \quad \forall n$$

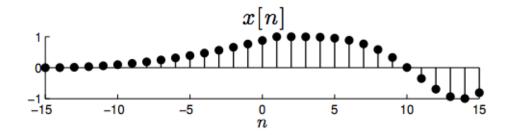
$$y[n] = (x[n])^2 \quad \forall n$$

$$y[n] = x[n+2] \quad \forall n$$

$$y[n] = x[2n] \quad \forall n$$

$$y[n] = x[n^2] \quad \forall n$$

System Examples



□ Shift system $(m \in \mathbb{Z} \text{ fixed})$

$$y[n] = x[n-m] \quad \forall n$$

Moving average (combines shift, sum, scale)

$$y[n] = \frac{1}{2}(x[n] + x[n-1]) \quad \forall n$$

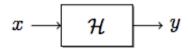
Recursive average

$$y[n] = x[n] + \alpha y[n-1] \quad \forall n$$

System Properties

- Memoryless
- Linearity
- □ Time Invariance
- Causality
- BIBO Stability

Memoryless



- y[n] depends only on x[n]
- □ Examples:
- □ Ideal delay system (or shift system):
 - y[n]=x[n-m] memoryless?
- Square system:
 - $y[n]=(x[n])^2$ memoryless?

A system \mathcal{H} is (zero-state) **linear** if it satisfies the following two properties:

Scaling

$$\mathcal{H}\{\alpha\,x\} = \alpha\,\mathcal{H}\{x\} \quad \forall \; \alpha \in \mathbb{C}$$

$$x \longrightarrow \boxed{\mathcal{H}} \longrightarrow y \qquad \alpha\,x \longrightarrow \boxed{\mathcal{H}} \longrightarrow \alpha\,y$$

2 Additivity

If
$$y_1 = \mathcal{H}\{x_1\}$$
 and $y_2 = \mathcal{H}\{x_2\}$ then
$$\mathcal{H}\{x_1 + x_2\} = y_1 + y_2$$

$$x_1 \longrightarrow \mathcal{H} \longrightarrow y_1 \qquad x_2 \longrightarrow \mathcal{H} \longrightarrow y_2$$

$$x_1 + x_2 \longrightarrow \mathcal{H} \longrightarrow y_1 + y_2$$

Proving Linearity

- □ A system that is not linear is called **nonlinear**
- To prove that a system in linear, you must prove rigorously that it has **both** the scaling and additive properties for **arbitrary** input signals
- □ To prove that a system is nonlinear, it is sufficient to exhibit a **counterexample**

$$x[n] \longrightarrow \mathcal{H} \longrightarrow y[n] = \frac{1}{2}(x[n] + x[n-1])$$

- Scaling: (Strategy to prove Scale input x by α , compute output y via the formula at top and verify that is scaled as well)
 - Let

$$x'[n] = \alpha x[n], \quad \alpha \in \mathbb{C}$$

$$x[n] \longrightarrow \mathcal{H} \longrightarrow y[n] = \frac{1}{2}(x[n] + x[n-1])$$

- **Scaling:** (Strategy to prove Scale input x by α , compute output y via the formula at top and verify that is scaled as well)
 - Let

$$x'[n] = \alpha x[n], \quad \alpha \in \mathbb{C}$$

- Let y' denote the output when x' is input
- Then

$$y'[n] = \frac{1}{2}(x'[n] + x'[n-1]) = \frac{1}{2}(\alpha x[n] + \alpha x[n-1]) = \alpha \left(\frac{1}{2}(x[n] + x[n-1])\right) = \alpha y[n]$$

$$x[n] \longrightarrow \mathcal{H} \longrightarrow y[n] = \frac{1}{2}(x[n] + x[n-1])$$

- Additive: (Strategy to prove Input two signals into the system and verify the output equals the sum of the respective outputs
 - Let

$$x'[n] = x_1[n] + x_2[n]$$

$$x[n] \longrightarrow \mathcal{H} \longrightarrow y[n] = \frac{1}{2}(x[n] + x[n-1])$$

- Additive: (Strategy to prove Input two signals into the system and verify the output equals the sum of the respective outputs
 - Let

$$x'[n] = x_1[n] + x_2[n]$$

- Let $y'/y_1/y_2$ denote the output when $x'/x_1/x_2$ is input
- Then

$$y'[n] = \frac{1}{2}(x'[n] + x'[n-1]) = \frac{1}{2}(\{x_1[n] + x_2[n]\} + \{x_1[n-1] + x_2[n-1]\})$$

$$= \frac{1}{2}(x_1[n] + x_1[n-1]) + \frac{1}{2}(x_2[n] + x_2[n-1]) = y_1[n] + y_2[n] \checkmark$$

Example: Squaring

$$x[n] \longrightarrow \mathcal{H} \longrightarrow y[n] = (x[n])^2$$

Example: Squaring is Nonlinear

$$x[n] \longrightarrow \mathcal{H} \longrightarrow y[n] = (x[n])^2$$

- Additive: Input two signals into the system and see what happens
 - Let

$$y_1[n] = (x_1[n])^2, \qquad y_2[n] = (x_2[n])^2$$

Set

$$x'[n] = x_1[n] + x_2[n]$$

Then

$$y'[n] = (x'[n])^2 = (x_1[n] + x_2[n])^2 = (x_1[n])^2 + 2x_1[n]x_2[n] + (x_2[n])^2 \neq y_1[n] + y_2[n]$$

DEFINITION

A system \mathcal{H} processing infinite-length signals is **time-invariant** (shift-invariant) if a time shift of the input signal creates a corresponding time shift in the output signal

- □ Intuition: A time-invariant system behaves the same no matter when the input is applied
- A system that is not time-invariant is called time-varying

Example: Moving Average

$$x[n] \longrightarrow \mathcal{H} \longrightarrow y[n] = \frac{1}{2}(x[n] + x[n-1])$$

Let

$$x'[n]=x[n-q],\quad q\in\mathbb{Z}$$

□ Let y' denote the output when x' is input

Example: Moving Average

$$x[n] \longrightarrow \mathcal{H} \longrightarrow y[n] = \frac{1}{2}(x[n] + x[n-1])$$

Let

$$x'[n]=x[n-q],\quad q\in\mathbb{Z}$$

- Let y' denote the output when x' is input
- Then

$$y'[n] = \frac{1}{2}(x'[n] + x'[n-1]) = \frac{1}{2}(x[n-q] + x[n-q-1]) = y[n-q]$$

Example: Decimation

$$x[n] \longrightarrow \mathcal{H} \longrightarrow y[n] = x[2n]$$

Example: Decimation

$$x[n] \longrightarrow \mathcal{H} \longrightarrow y[n] = x[2n]$$

- This system is time-varying; demonstrate with a counter-example
- Let

$$x'[n] = x[n-1]$$

- Let y' denote the output when x' is input (that is, $y' = \mathcal{H}\{x'\}$)
- Then

$$y'[n] = x'[2n] = x[2n-1] \neq x[2(n-1)] = y[n-1]$$

Causal Systems

DEFINITION

A system \mathcal{H} is **causal** if the output y[n] at time n depends only the input x[m] for times $m \leq n$. In words, causal systems do not look into the future

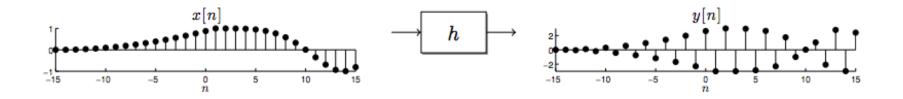
- □ Forward difference system:
 - y[n]=x[n+1]-x[n] causal?
- Backward difference system:
 - y[n]=x[n]-x[n-1] causal?

- BIBO Stability
 - Bounded-input bounded-output Stability

An LTI system is **bounded-input bounded-output (BIBO) stable** if a bounded input x always produces a bounded output y

bounded $x \longrightarrow h \longrightarrow \text{bounded } y$

■ Bounded input and output means $\|x\|_{\infty} < \infty$ and $\|y\|_{\infty} < \infty$, or that there exist constants $A, C < \infty$ such that |x[n]| < A and |y[n]| < C for all n



System Properties - Summary

- Causality
 - y[n] only depends on x[m] for $m \le n$
- Linearity
 - Scaled sum of arbitrary inputs results in output that is a scaled sum of corresponding outputs
 - $Ax_1[n] + Bx_2[n] \rightarrow Ay_1[n] + By_2[n]$
- Memoryless
 - y[n] depends only on x[n]
- □ Time Invariance
 - Shifted input results in shifted output
 - $x[n-q] \rightarrow y[n-q]$
- BIBO Stability
 - A bounded input results in a bounded output (ie. max signal value exists for output if max)

Examples

- □ Causal? Linear? Time-invariant? Memoryless? BIBO Stable?
- □ Time Shift:

•
$$y[n] = x[n-m]$$

□ Accumulator:

$$y[n] = \sum_{k=-\infty}^{n} x[k]$$

□ Compressor (M>1):

$$y[n] = x[Mn]$$

Big Ideas

- Discrete Time Signals
 - Unit impulse, unit step, exponential, sinusoids, complex sinusoids
 - Can be finite length, infinite length
 - Properties
 - Even, odd, causal
 - Periodicity and aliasing
 - Discrete frequency bounded!
- Discrete Time Systems
 - Transform one signal to another
- $y = \mathcal{H}\{x\}$ $x \longrightarrow \mathcal{H} \longrightarrow y$

- Properties
 - Linear, Time-invariance, memoryless, causality, BIBO stability

Admin

- □ Enroll in Piazza site:
 - piazza.com/upenn/spring2020/ese531
- □ HW 0: Brush up on background and Matlab tutorial
- Diagnostic test due Thursday
- □ HW 1 posted Thursday