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oelsiese’s

o DFT vs. DTFT
a FFT practice
0 Chirp Transform Algorithm

o Circular convolution as linear convolution
with aliasing
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Discrete Fourier Transform

o The DFT
1 N1
_ —kn .
z[n] = N kzzo X[EWy Inverse DFT, synthesis
N-1
X[k = z[n]WEr DFT, analysis
n=0

0 Itis understood that,
zln] = 0 outside0<n<N-1
X[k] = 0 outside0<k<N-1

Penn ESE 531 Spring 2020 — Khanna
Adapted from M. Lustig, EECS Berkeley

DFT vs. DTFT

seseees

0 The DFT are samples of the DTFT at N equally
spaced frequencies

X[k = X(e")]yopze 0<k<N-1

Penn ESE 531 Spring 2020 — Khanna
Adapted from M. Lustig, EECS Berkeley 4

¢ DFT Intuition
Time Transform Frequency
x[n] X(e™)
DTFT [
—
11 I I ot X[n]=i:£/\’(e“”)c"“”dw ®
) X[K]
Xn] DFs
_
I l I in]= BN X[k
el lleettelllee, - T |
o n N-1k
Periodic in N
X[k]
DFT

x[n] ﬁ) P

x[n]=7EX[k]WW’,*" Teo
N ! 1 .
TTI I"n = N-1K
Penn ESE 531 Spring 2020 - Khanna

DFT vs DTFT

eelsieeels

o Back to example ( i k)

5
1(£k)
10

“6-point” DFT
“10-point” DFT

5 i
vir =\ w2

Xejw)l

Use fftshift
to center
’ around dc

Penn ESE 531 Spring 2020 — Khanna
Adapted from M. Lustig, EECS Berkeley 6
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Fast Fourier Transform Algorithms

0 We are interested in efficient computing methods

for the DFT and inverse DFT:
N-1
X[k = x[nWE, k=0,...,N—1
n=0
N—1

X[KWg*, n=0,...,N—1
0

x

Wy = 3%,

Penn ESE 531 Spring 2020 — Khanna
Adapted from M. Lustig, EECS Berkeley

a

Decimation-in-Time FFT

oelsiese’s

Combining all these stages, the diagram for the 8 sample DFT is:

X0] o—— [0

4] o—— 1]
-1 w, 0

2] X X2l

A
w,

(6] SVEN 131

% S—
w,

x[5] N2 X X[5]
T owy? Wy -

3] o—— > X[6]
? Wey! /\ W

7 X7
] 1 -1

+ 3=log,(N)=log,(8) stages
» 4=N/2=8/2 multiplications in each stage

Penn ESE 531 Spring 2020 — Khanna . qst stage has trivial multiplication
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Frequency FFT

The diagram for and 8-point decimation-in-frequency DFT is as

follows
x[1] X[4]
W
x2] X2
- 1
s 4//$\L~WM o
w0 1 -1
N
- J ! 444?52? ﬂ”
N
X&) X[5]
21 w2 W 1 -
x[6] X[3]
] 3 o f; z“
wy W,
x[7] 2 /j\ (L > X[7]

This is just the decimation-in-time algorithm reversed!
The inputs are in normal order, and the outputs are bit reversed.

Penn ESE 531 Spring 2020 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Example 1:

A long periodic sequence x of period N = 2" (r is an integer)
is to be convolved with a finite-length sequence % of length K.

o Show that the output y of this convolution (filtering) is
periodic. What is its period?

Penn ESE 531 Spring 2020 - Khanna
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Example 1:

A long periodic sequence x of period N = 2" (r is an integer)
is to be convolved with a finite-length sequence /4 of length K.

o Show that the output y of this convolution (filtering) is
periodic. What is its period?

What information do we know?
x[n]=x[n+N]
h[n] only non-zero for 0 <n <K

Yn]=x[n]*h(n]

Penn ESE 531 Spring 2020 - Khanna

eelsieeels

Example 1:

A long periodic sequence x of period N = 2" (r is an integer)
is to be convolved with a finite-length sequence 4 of length K.

« Show that the output y of this convolution (filtering) is
periodic. What is its period?

What information do we know?
X[n]=x[n+N]
h[n] only non-zero for 0 <n <K

yln]=x[n]*h[n]

-1

=Y x[n-mlh[m]
0

>

H
i

Penn ESE 531 Spring 2020 - Khanna




Example 1:

oelsiese’s

A long periodic sequence x of period N = 2" (r is an integer)

is to be convolved with a finite-length sequence / of length K.

« Show that the output y of this convolution (filtering) is
periodic. What is its period?

What information do we know?

What do we need to show?

x[n]=x[n+N]
h[n] only non-zero for 0 <n <K

y[n]=y[n+M]

Ynl=x[n]*h[n]
= %x[n —m]h[m]
m=0

Penn ESE 531 Spring 2020 - Khanna

oelsiese’s

Example 1:

A long periodic sequence x of period N = 2 (r is an integer)

is to be convolved with a finite-length sequence / of length K.

o Show that the output y of this convolution (filtering) is
periodic. What is its period?

What information do we know?
X[n]=x[n+N]

What do we need to show?

y[n]=y[n+M]

h[n] only non-zero for 0 <n <K

[n]=x[n]*h[n] y[n"'M]:KSIX[(”"'M)—m]h[m]
=i m=0
K-1
= 2 =it M=?

Penn ESE 531 Spring 2020 - Khanna
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Example 1:

A long periodic sequence x of period N = 2" (r is an integer)

is to be convolved with a finite-length sequence % of length K.

«  Show that the output y of this convolution (filtering) is
periodic. What is its period?

What do we need to show?

y[n]=y[n+M]

What information do we know?
x[n]=x[n+N]
h[n] only non-zero for 0 <n <K

o] =x{n] hir] y[n+N]= Y x[(n+ N)—m]h[m]
K-1 ,I'(’il:
= Ex[n —mh[m] =N x{n-mlh[m]
m=0 m=0
=y[n]

Penn ESE 531 Spring 2020 - Khanna
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Example 1:

A long periodic sequence x of period N = 2" (r is an integer)

is to be convolved with a finite-length sequence 4 of length K.

o Show that the output y of this convolution (filtering) is
periodic. What is its period?

» Let K=mN where m is an integer; N is large. How would
you implement this convolution efficiently? Explain your
analysis clearly. Compare the total number of
multiplications required in your scheme to that in the
direct implementation of FIR filtering. (Consider the case
r=10,m=10).

Penn ESE 531 Spring 2020 - Khanna

Example 1:

eelsieeels

A long periodic sequence x of period N = 2" (r is an integer)

is to be convolved with a finite-length sequence /4 of length K.

o Show that the output y of this convolution (filtering) is
periodic. What is its period?

» Let K =mN where m is an integer; N is large. How would
you implement this convolution efficiently? Explain your
analysis clearly. Compare the fotal number of
multiplications required in your scheme to that in the
direct implementation of FIR filtering. (Consider the case
r=10,m =10).

What information do we know?

x[n] = {x[0],...x[ N ~1]}

h{n] = {H[0],...h[K ~1]}

Penn ESE 531 Spring 2020 - Khanna
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Example 1:

eelsieeels

A long periodic sequence x of period N = 2" (r is an integer)

is to be convolved with a finite-length sequence 4 of length K.

« Show that the output y of this convolution (filtering) is
periodic. What is its period?

v Let K=mN where m is an integer; N is large. How would
you implement this convolution efficiently? Explain your
analysis clearly. Compare the total number of
multiplications required in your scheme to that in the
direct implementation of FIR filtering. (Consider the case
r=10,m =10).

What information do we know? w
x[n]={x[0],....x[N -1]} = X[n]= E x[n-rN],
H[n] = {h[0],..., AK 1]} = {A[O],....AmN —1]}

Penn ESE 531 Spring 2020 - Khanna

forall 0sn< N




Example 1:

oelsiese’s

A long periodic sequence x of period N = 2" (r is an integer)
is to be convolved with a finite-length sequence / of length K.
o Show that the outp
periodic. What is
v Let K=mN wher¢
you implement thi
analysis clearly. (
multiplications re
direct implementa

N sample

Example 1:

oelsiese’s

What information do we know?

e

H[n) = {H[0),....h([K =11} = {h[O],...,h([mN - 1]}

e

Mnl= D xln- plhlp)
=0

Y= {310L,o YIN =11} = F{n] = 3, ¥n-rN],

forall 0sn< N

forall 0sn< N

Penn ESE 531 Spring 2020 - Khanna 20
¢ Example 1:
:
:
K-1
lnl= Y. fln- plilp]
p=0
mN-1
= > fln-plilp]
p=0
Penn ESE 531 Spring 2020 - Khanna 22

r=10,m =10).
What information do we know? -
x[n]={x[0],....x[N -1]} = X[n]= E x[n-rN1], forall 0sn<N
hln]={H[0],.., ALK =11} = {h[O,..., ALmN 1}
Penn ESE 531 Spring 2020 - Khanna 19
¢ Example 1:
K-1
Hnl= . 5n- plhlp]
p=0
Penn ESE 531 Spring 2020 - Khanna 21
¢ Example 1:
K-l
Fnl= Y xln- plhlp]
p=0
mN-1
= Y &ln- plilp]
p=0
N-1 2N-1 3N-1 mN-1
= > iln-pllpl+ 3, in-plilpl+ Y in-plhlpl+..+ > fn-pllp]
p=0 p=N p=2N p=(m-1)N
Penn ESE 531 Spring 2020 - Khanna 23
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Example 1:

=Y &ln - plilp]
p=0
mN-1

= ), n-plilp]

N-l 2N-1 3N~

- 3Nl
= X iln=plhlpl+ Y, fn-pYilpl+ 3, fn-plilpl+..+

p=0 p=N p=2N
1 N-1

=
i

p=0 p=0

+4..+E)’c[n—(p+(m—1)N)]h[p+(m—l)N]

=0

Penn ESE 531 Spring 2020 - Khanna

N1

=0

mN=1

p=(m-)N

=Efr[n—p]h[p]+‘2i[n—(p+N)]h[p+N]+ S #n-(p+2N)HLp+2N]

S #Hn-plip)

24




Example 1:

oelsiese’s

N1 N-1 N1
Fnl= 3 &ln- plhlpl+ 3 5n=(p+ N)Ip+ N1+ 3 5n=(p+2N)H[p+2N]

p=0 P=0 =0

ot g)?[n ~(p+(m=DN)H[ p+(m-1)N]

=0
=S - plhlpl+ 3 fn- pYilp+ N1+ 3 5n plilp+2N]
p=0 =0 p=0

+...+§fc[n—p]h[p+(m—l)N]
=0
- 3[n] *{h[n]}‘:" + ]+ N]}:H + ]+ 2N]}:"

N-1
0

+...+)?[n]*{h[n +mN]}

m=1
=iln]+| Y hlp+aN]
q=0
Penn ESE 531 Spring 2020 - Khanna
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Example 1:

3nl- fc[n]*(ﬁ[wth}

4=0

—)lnl- x[n]*(Sh[qu]

4=0

We see that the result of the convolution block of
length N is a circular convolution of one period of the
input with the N-block sum of the impulse response

N sample

m-1
(Eh[mqm]
4=0

Penn ESE 531 Spring 2020 - Khanna

Example 1:

oelsiese’s

m=1 m=1
y[n]=f[n]*[§h[p+qm]ey[n]=x[n]*[§h[p+qzv]]

4=0 4=0

Penn ESE 531 Spring 2020 - Khanna
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Example 1:

A long periodic sequence x of period N = 2" (r is an integer)

v Let K =mN where m is an integer; N is large. How would
you implement this convolution efficiently? Explain your
analysis clearly. Compare the total number of
multiplications required in your scheme to that in the
direct implementation of FIR filtering. (Consider the case
r=10,m =10).

m-1
ynl= x[n]*[Eh[pr]]
4=0

What about the computation?

N=210, K=211

Penn ESE 531 Spring 2020 - Khanna

is to be convolved with a finite-length sequence % of length K.

28

Example 2:

eelsieeels

A sequence x = {x[n], n =0,1,..., N - 1} is given; let X (¢°) be

its DTFT.

o Suppose N =10. You want to evaluate both X(&>*71?) and
X(e>*%®). The only computation you can perform is one
DFT, on any one input sequence of your choice. Can you
find the desired DTFT values? (Show your analysis and
explain clearly.)

Penn ESE 531 Spring 2020 - Khanna
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Example 2:

eelsieeels

A sequence x = {x[n],n = 0,1,..., N - 1} is given; let X (¢/*) be

its DTFT.

o Suppose N =10. You want to evaluate both X(e>*71?) and
X(€?%38). The only computation you can perform is one
DFT, on any one input sequence of your choice. Can you
find the desired DTFT values? (Show your analysis and
explain clearly.)

1 14
jZn-E _ _/Zﬂ'a .
e =e 24-point DFT
3 9
202 2m—
PR

Penn ESE 531 Spring 2020 - Khanna
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Example 2:

A sequence x = {x[n],n =0,1,..., N - 1} is given; let X (e/®) be its DTFT.

»  Suppose N is large. You want to obtain X (¢/°) at the following 2M
frequencies:
® :z—ﬂm, m=0,1,..,M-1 and w= 2—’rm+2—ﬂ m=0,1,..,M -1

M M N

Here M=24 << N = 2, (Eg. u=8,v=14)

A standard radix-2 FFT algorithm is available. You may execute the FFT

algorithm once or more than once, and multiplications and additions

outside of the FFT are allowed, if necessary.

L You want to get the 2M DTFT values with as few total
multiplications as possible (including those in the FFT). Give
explicitly the best method you can find for this, with an estimate of
the total number of multiplications needed in terms of M and N.

1. Does your result change if extra multiplications outside of FFTs are
not allowed?

Penn ESE 531 Spring 2020 - Khanna
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oelsiese’s

Example 2:

w=2—”m, m=0,1,...,.M -1 and w=2—”m+2—n, m=0,1,..,.M -1
M M N

Here M =20 << N = 2V, (Eg. p=8,v=14)

A standard radix-2 FFT algorithm is available. You may execute the FFT

algorithm once or more than once, and multiplications and additions

outside of the FFT are allowed, if necessary.

L You want to get the 2M DTFT values with as few total
multiplications as possible (including those in the FFT). Give
explicitly the best method you can find for this, with an estimate of
the total number of multiplications needed in terms of M and N.

X|e M N - Ev\'["k M N
n=0
Penn ESE 531 Spring 2020 - Khanna 32
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Example 2:

(u:z—ﬂm, m=0,1,..,M -1 and (u:zlnu-zl, m=0,1,..,M -1
M M N

Here M =2+ << N = 2, (Eg. p=8,v=14)

A standard radix-2 FFT algorithm is available. You may execute the FFT

algorithm once or more than once, and multiplications and additions

outside of the FFT are allowed, if necessary.

L You want to get the 2M DTFT values with as few total
multiplications as possible (including those in the FFT). Give

explicitly the best method you can find for this, with an estimate of
the total number of multiplications needed in terms of M and N.

3

I

-
[nle Me

=y[n]

i

Penn ESE 531 Spring 2020 - Khanna
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Example 2:

w:z—”m, m=0,1,..,M-1 and w:z—ﬂm+2—ﬂ, m=0,1,...M-1
M M N

Here M=2¢ << N = 2, (Eg. p=8,1=14)
A standard radix-2 FFT algorithm is available. You may execute the FFT
algorithm once or more than once, and multiplications and additions
outside of the FFT are allowed, if necessary.

1 You want to get the 2M DTFT values with as few total
multiplications as possible (including those in the FFT). Give
explicitly the best method you can find for this, with an estimate of
the total number of multiplications needed in terms of M and N.

/[L“WE) Nl 7/[24%2‘;,, Ny, e
X|e'\M N :Ex[n]e M :2)([”](’ M
n=0 n=0
Nl i e
=3l M =y
=0
Penn ESE 531 Spring 2020 - Khanna 34

Example 2:

eelsieeels

t/)=2—ﬂm, m=0,1,..,M-1 and w=2—”m+2—”, m=0,1,...M -1
M M

Here M =24 << N = 2V, (Eg. p=8, v=14)

A standard radix-2 FFT algorithm is available. You may execute the FFT

algorithm once or more than once, and multiplications and additions

outside of the FFT are allowed, if necessary.

1 You want to get the 2V DTFT values with as few rotal
multiplications as possible (including those in the FFT). Give
explicitly the best method you can find for this, with an estimate of
the total number of multiplications needed in terms of M and N.

1. Does your result change if extra multiplications outside of FFTs are
not allowed?

Penn ESE 531 Spring 2020 - Khanna

Chirp Transform Algorithm
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Chirp Transform Algorithm

0 Uses convolution to evaluate the DFT

0 This algorithm is not optimal in minimizing any
measure of computational complexity, but it has
been useful in a variety of applications, particularly
when implemented in technologies that are well
suited to doing convolution with a fixed, pre-
specified impulse response.

0 The CTA is also more flexible than the FFT, since it
can be used to compute azny set of equally spaced
samples of the Fourier transform on the unit circle.

Penn ESE 531 Spring 2020 - Khanna 37
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Chirp Transform Algorithm

For M points of DTFT

¢ Chirp Transform Algorithm
For M points of DTFT
uniformly spaced on a . z-plane
sector of unit-circle o =0, + kdo, k=0,L..M~1
Unit
circle M~1 )4
@0
Re
Penn ESE 531 Spring 2020 - Khanna 38
¢ Chirp Transform Algorithm

For M points of DTFT

uniformly spaced on a Im z-plane
sector of unit-circle 0, =@y + kbo, k=0,1,...M~1
Unit
circle M =1)4
@0
Re
k
Penn ESE 531 Spring 2020 - Khanna 0 N-1 30
¢ Chirp Transform Algorithm
WA ot
LTI Filter
h[n]=
L D
X (e/on)
qu" 2 :L)/\m,f 2
e—jmunwnl/z _ p/(Beni2)n an/z
linearly increasing
frequency "chirp"
Penn ESE 531 Spring 2020 - Khanna 41

uniformly spaced on a Im z-plane
sector of unit-circle @ =, + kAo, k=0,1,.,M~1
Unit
circle M= 1)y
@o
Re
When w,=0 and M=N,
we just get the DFT
Penn ESE 531 Spring 2020 - Khanna 40
¢ Causal FIR CTA
g = [ WOV =0l M+ N =2
hiln] = s e ,
! 0, otherwise.
() Iyl ()
x[n] glnl yiln]
e—/’u),,nwn:/z W =N+ 122

Xy =ymn+N-1, n=01,....M-1

Penn ESE 531 Spring 2020 - Khanna 42




Example: Chirp Transform Parameters

oelsiese’s

0 We have a finite-length sequence x[n] that is
nonzero only on the interval n = 0, ..., 25, (Length
N=20) and we wish to compute 16 samples of the
DTFT X(e/?) at the frequencies W, = 27T /27 +
27k/1024 fork =0, ..., 15.

For M points of DTFT
uniformly spaced on a fm plane

sector of unit-circle  onmap kAo, K20 M1

Unit
circle

Circular Convolution

Linear Convolution with aliasing!

Penn ESE 531 Spring 2020 - Khanna
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Compute Circular Convolution Sum

z1[n]
1 o 0
01 2 3 4 5 6 n
z2[n)
1 o o
01 2 3 n
AN71
z1[n] @z2[n] = ) z1[m]za[((n —m))N]
m=0

Penn ESE 531 Spring 2020 — Khanna
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¢ Circular Convolution
o Circular Convolution:
N-1
A
z1[n] @ z2[n] = ) 1[mlza[((n — m))N]
m=0
For two signals of length N
Note: Circular convolution is commutative
z2[n] @ z1[n] = z1[n] @ z2[n]
Penn ESE 531 Spring 2020 — Khanna
Adapted from M. Lustig, EECS Berkeley 45
¢ Compute Circular Convolution Sum
z1[n]
1 o 0o
01 2 3 4 5 6 n
z2[n]
1 o o
0 1 2 3 4 & & n
N N-1
z1[n] @ zaln] = Y ma[mlws[((n — m)) ]
m=0

Penn ESE 531 Spring 2020 — Khanna
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Adapted from M. Lustig, EECS Berkeley

Adapted from M. Lustig, EECS Berkeley 46
¢ Compute Circular Convolution Sum
z1[n]
1 T T o
01 2 3 4 5 6 n
z2[n]
1d o T
o 1 2 3 4 5 6N
N N-1
21fn] @ z2[n] = ) wafmlza(((n —m))n]
m=0
Penn ESE 531 Spring 2020 — Khanna
48

Adapted from M. Lustig, EECS Berkeley




Compute Circular Convolution Sum

oelsiese’s

y[0]=2
z1[n]
T
01 2 3 4 5 6 n
z2[n]
AR
01 2 3 4 5 61N

N-1
A
z1[n] @ aln] = Y @1 [mlas[((n — m)) N]
m=0
Penn ESE 531 Spring 2020 — Khanna
Adapted from M. Lustig, EECS Berkeley

Compute Circular Convolution Sum

oelsiese’s

seseees

Compute Circular Convolution Sum

y[0]=2
-771["] y[1]=2
1 0o o0 T ]7 y[2]=3
01 2 3 4 5 6 n
EAQ
T 14

o 1 2 3 4 5 6 N
N-1
o1ln] @ z2ln] 2 @a[mlz[((n —m)) )
m=0

Penn ESE 531 Spring 2020 — Khanna
Adapted from M. Lustig, EECS Berkeley

y[0]=2
z1[n] yl[1]=2
| o T T T
01 2 3 4 5 6 n
[2[n]
T T ] T T
0o 1 2 3 4 5 6 N
A N-1
#1[n] @ z2[n] = Y 21 [mlma[((n — m))n]
m=0
Penn ESE 531 Spring 2020 — Khanna
Adapted from M. Lustig, EECS Berkeley 50
: Compute Circular Convolution Sum
y[0]=2
zl[n] y[1]=2
1 o o y[2]=3
y[3]=4
1 2 3 4 5 6 n

I

1) @ zaln] £ 3 21 [mlea]((n —m)) ]

0 1 2 3 4 5 6
1

3
Il
)

Penn ESE 531 Spring 2020 — Khanna
Adapted from M. Lustig, EECS Berkeley 52

: Result
y[0]=2
y[1]=2
y[2]=3
y[3]=4
4

] W T
01 2 3 4 5 6 n

N-1
a1ln] @ waln] £ Y @1 [mlasl((n — m))w]

m=0

Penn ESE 531 Spring 2020 — Khanna
Adapted from M. Lustig, EECS Berkeley

Linear Convolution

eelsieeels

o We start with two non-periodic sequences:
zn] 0<n<L-1
hln] 0<n<P-1

= E.g. x[n] is a signal and h[n] a filter’s impulse response

0 We want to compute the linear convolution:

L-1
vln] = eln] * hin) = 3 z[m]h[n —m]
m=0
= y[n] is nonzero for 0 < n < L+P-2 with length M=L+P-1

Penn ESE 531 Spring 2020 — Khanna Requires LP multiplications
Adapted from M. Lustig, EECS Berkeley 54




Linear Convolution via Circular Convolution

oelsiese’s

0 Zero-pad x[n| by P-1 zeros

_fzn 0<n<L-1
zll =10 L<n<L+P-2

0 Zero-pad h[n] by L-1 zeros

h [ hln] 0<n<P-1
@M =10 P<n<LiP-2

o Now, both sequences ate length M=L+P-1

Penn ESE 531 Spring 2020 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Citcular Conv. via Linear Conv. w/ Aliasing

0 If the DTFT X(¢/%) of a sequence x[n] is sampled at
N frequencies W, =2 T k/N, then the resulting
sequence X[k] corresponds to the periodic sequence

o0

= ) xln—rN].

r=—o00

_ [ X @My, 0 <k <N -1,
o And XK=y, otherwise,

DFT of one pcfiod given as

is the

n] = X[n], 0<ns<N-1,
=10, otherwise.

Penn ESE 531 Spring 2020 - Khanna
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Circular Conv. via Linear Conv. w/ Aliasing

o [l O<nsN -1,

=10, otherwise.

o If x[n] has length less than or equal to N, then
x,[0]=x[n]

0 However if the length of x[n] is greater than N, this
might not be true and we get aliasing in time

= N-point convolution results in N-point sequence

Penn ESE 531 Spring 2020 - Khanna
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Circular Conv. via Linear Conv. w/ Aliasing

o Given two N-point sequences (x,[n] and x,[n]) and
their N-point DFTs (X, [k] and X,[k])

a The N-point DFT of x;[n]=x,[n]*x,[n] is defined as

Xs[k] _ X3(ej(2nk/m)
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Circular Conv. via Linear Conv. w/ Aliasing

eelsieeels

o Given two N-point sequences (x,[n] and x,[n]) and
their N-point DFT's (X, [k] and X, [k])

0 The N-point DFT of x;[n]=x, [n]*x,[n] is defined as
X,[k] = X}(ej(ZJrk/N))

o And X;[k]=X, [k]X,[k], whete the inverse DFT of
X, [K] is

o0

Z x3ln—rN], 0<n<N-1,
r=-—0oc
0, otherwise,

x3pln] =

Penn ESE 531 Spring 2020 - Khanna

Citcular Conv. as Linear Conv. w/ Aliasing

eelsieeels

o0

> xmin—-rNJ, 0Osn<N-1,
re—o0o
0, otherwise,

x3pln] =

Penn ESE 531 Spring 2020 - Khanna
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oelsiese’s

Circular Conv. as Linear Conv. w/ Aliasing

o0
S xaln—rN], 0<n<N-1,
x3plnl =y =
0. otherwise,
0 Thus < "
-7 - snsN-1
x n]= ;_le[n ’N1*x,[n-rN] OsnsN

0 else

x;,[n] = x,[n]@x,[n]

0 The N-point circular convolution is the sum of
linear convolutions shifted in time by N

oelsiese’s

Example 1:

o Let

M7

a The N=L=6-point circular convolution results in

Penn ESE 531 Spring 2020 - Khanna 62
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¢ Example 1:
o Let
‘l l l ‘ l [ o
L=P=
0 L=P n
0 The N=L=06-point circular convolution results in
—L! I ’ [ l ’ 1(n) @ x,ln).
N=L=6
0o N-1 n
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seseees

Example 1:

o Let

1]

0 L=P n

0 The linear convolution results in

Penn ESE 531 Spring 2020 - Khanna 64

Example 1:

eelsieeels

o Let

L]

0 L=P n

0 The linear convolution results in

L

!,‘”]H“LJ_,

x3ln) = xy[n] = xz[n]
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Example 1:

eelsieeels

0 The sum of N-shifted linear convolutions equals the N-point

circular convolution .

._zTL]”J]lTZLt_l

(b)

x3ln) =x[n] » xp[n)

;II”LHIII%ET

©

x3[n + N,

i,

Penn ESE 531 Spring 2020 - Khanna 66
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Example 1:

oelsiese’s

0 The sum of N-shifted linear convolutions equals the N-point
circular convolutios

L

;Hlm]h,

(b)

x3ln) = xy[n] + xz[n)

il

Example 1:

oelsiese’s

0 The sum of N-shifted linear convolutions equals the N-point

circular convolutios

L

;IIIHHILJ_I

xln) = x[n) = xo[m)
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¢ Example 1:
3
e
o If I want the circular convolution and linear
convolution to be the same, what do I do?
Penn ESE 531 Spring 2020 - Khanna ©
¢ Example 1:
:
:
a If I want the circular convolution and linear
convolution to be the same, what do I do?
= Take the N=2L-point circular convolution
L
o 1] IH I (11
0
L
111 ]H ] (11
L
1] I I I l ] 1,
Penn ESE 531 Spring 2020 - Khanna 71

"
"] ‘ | [ ’ ] x(n) @l
N=L=6
o N- 1 n
©
L xln+N.
] V=L=6
ol J_L U_[ t
-N 0 n
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¢ Example 1:
3
e
a If I want the circular convolution and linear
convolution to be the same, what do I do?
= Take the N=2L-point circular convolution
L xn) ®xln),
I l [ [ N=2L
1 1] 1,
0 n
Penn ESE 531 Spring 2020 - Khanna 70
¢ Example 2:
:
:
o Let 1] ‘ l xln)
1
|
0 L Ld
@
I .
0 P n
®
Penn ESE 531 Spring 2020 - Khanna 7
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Example 2:

o 'gmme

(a)

L "

®)

oelsiese’s

Linear convolution ;
\
Al

L+P-1

xs3ln] = x1[n] « x[n]

0 What does the L-point circular convolution look like?

Penn ESE 531 Spring 2020 - Khanna 73

Example 2:

oelsiese’s

a Let 111 xiln)

o
o syt = x1[n] © x2[n] = ’;mxg[n —rL], 0<n<L-—1,

0, otherwise.

11 .
0 P n
(b]
Linear convolution

il

L+P-1

x3[n] = x[n] « x3[n]

o What does the L-point circular convolution look like?

Penn ESE 531 Spring 2020 - Khanna

Example 2:

seseees

o The L-shifted linear convolutions

Bl

o)

xlnl

Example 2:

seseees

o The L-shifted linear convolutions

Bl

xln]

wlne L)

il

ot "

aglnl=xy) o 3ln s L),0= 05 L1

]

| m—
©
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xine 1)
Al
P ot "
Pl
®
nln-1)
I — Uﬂ L
©
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: Big Ideas
.
.
o Discrete Fourier Transform (DFT)
= For finite signals assumed to be zero outside of defined length
= N-point DFT is sampled DTFT at N points
= Useful properties allow easier linear convolution
o Fast Fourier Transform
= Enable computation of an N-point DFT (or DFT"!) with the order
of just N -log, N complex multiplications.
o Fast Convolution Methods
= Use circular convolution (i.e DFT) to perform fast linear convolution
« Overlap-Add, Overlap-Save
= Circular convolution is linear convolution with aliasing
0 Design DSP methods to minimize computations!
Penn ESE 531 Spring 2020 — Khanna
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Admin

eelsieeels

0 Read adaptive filter reference for next lecture

= Find on course calendar

a Project: Adaptive Filtering

= Handout posted over the weekend

= Work in pairs
= Use Piazza to find partners

= Will discuss next lecture
= Read handout linked on calendar before class!
= Additional resources in Canvas Files

= Due 4/28

Penn ESE 531 Spring 2020 — Khanna
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