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ESE 531: Digital Signal Processing 
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Fast Fourier Transform Pt 2 
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Lecture Outline 

!  DFT vs. DTFT  
!  FFT practice 
!  Chirp Transform Algorithm 
!  Circular convolution as linear convolution 

with aliasing 
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Discrete Fourier Transform 

!  The DFT 

!  It is understood that, 
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DFT vs. DTFT 

!  The DFT are samples of the DTFT at N equally 
spaced frequencies 
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DFT Intuition 
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Time Transform Frequency 
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DFT vs DTFT 

!  Back to example 
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“10-point” DFT 

Use fftshift 
to center 
around dc 

“6-point” DFT 
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Fast Fourier Transform Algorithms 

!  We are interested in efficient computing methods 
for the DFT and inverse DFT: 
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Decimation-in-Time FFT 
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•  3=log2(N)=log2(8)  stages 
•  4=N/2=8/2 multiplications in each stage 

•  1st stage has trivial multiplication 

Decimation-in-Frequency FFT 
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Example 1: 
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A long periodic sequence x of period N = 2r (r is an integer) 
is to be convolved with a finite-length sequence h of length K.  
a)  Show that the output y of this convolution (filtering) is 

periodic.  What is its period?  

Example 1: 
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A long periodic sequence x of period N = 2r (r is an integer) 
is to be convolved with a finite-length sequence h of length K.  
a)  Show that the output y of this convolution (filtering) is 

periodic.  What is its period?  

y[n]= x[n]∗h[n]

= x[n−m]h[m]
m=0

K−1

∑

What information do we know? 
x[n]=x[n+N] 
h[n] only non-zero for 0 ≤ n < K 

Example 1: 
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A long periodic sequence x of period N = 2r (r is an integer) 
is to be convolved with a finite-length sequence h of length K.  
a)  Show that the output y of this convolution (filtering) is 

periodic.  What is its period?  

y[n]= x[n]∗h[n]
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Example 1: 
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A long periodic sequence x of period N = 2r (r is an integer) 
is to be convolved with a finite-length sequence h of length K.  
a)  Show that the output y of this convolution (filtering) is 

periodic.  What is its period?  

y[n]= x[n]∗h[n]

= x[n−m]h[m]
m=0

K−1

∑

What information do we know? 
x[n]=x[n+N] 
h[n] only non-zero for 0 ≤ n < K 

What do we need to show? 
y[n]=y[n+M] 

Example 1: 
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A long periodic sequence x of period N = 2r (r is an integer) 
is to be convolved with a finite-length sequence h of length K.  
a)  Show that the output y of this convolution (filtering) is 

periodic.  What is its period?  

y[n]= x[n]∗h[n]

= x[n−m]h[m]
m=0

K−1

∑

What information do we know? 
x[n]=x[n+N] 
h[n] only non-zero for 0 ≤ n < K 

What do we need to show? 
y[n]=y[n+M] 

y[n+M ]= x[(n+M )−m]h[m]
m=0

K−1

∑

M=? 

Example 1: 
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A long periodic sequence x of period N = 2r (r is an integer) 
is to be convolved with a finite-length sequence h of length K.  
a)  Show that the output y of this convolution (filtering) is 

periodic.  What is its period?  

y[n]= x[n]∗h[n]

= x[n−m]h[m]
m=0

K−1

∑

What information do we know? 
x[n]=x[n+N] 
h[n] only non-zero for 0 ≤ n < K 

What do we need to show? 
y[n]=y[n+M] 

y[n+ N ]= x[(n+ N )−m]h[m]
m=0

K−1

∑

= x[n−m]h[m]
m=0

K−1

∑

= y[n]

Example 1: 
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A long periodic sequence x of period N = 2r (r is an integer) 
is to be convolved with a finite-length sequence h of length K.  
a)  Show that the output y of this convolution (filtering) is 

periodic.  What is its period?  
b)  Let K = mN where m is an integer; N is large. How would 

you implement this convolution efficiently? Explain your 
analysis clearly.  Compare the total number of 
multiplications required in your scheme to that in the 
direct implementation of FIR filtering. (Consider the case 
r = 10, m = 10 ).  

Example 1: 
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A long periodic sequence x of period N = 2r (r is an integer) 
is to be convolved with a finite-length sequence h of length K.  
a)  Show that the output y of this convolution (filtering) is 

periodic.  What is its period?  
b)  Let K = mN where m is an integer; N is large. How would 

you implement this convolution efficiently? Explain your 
analysis clearly.  Compare the total number of 
multiplications required in your scheme to that in the 
direct implementation of FIR filtering. (Consider the case 
r = 10, m = 10 ).  

x[n]={x[0],...,x[N −1]}→ !x[n]= x[n− rN ]
r=−∞

∞

∑ ,            for all 0 ≤ n < N

h[n]={h[0],...,h[K −1]}={h[0],...,h[mN −1]}

What information do we know? 

Example 1: 
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A long periodic sequence x of period N = 2r (r is an integer) 
is to be convolved with a finite-length sequence h of length K.  
a)  Show that the output y of this convolution (filtering) is 
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What information do we know? 
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What information do we know? 

y[n]= x[n− p]h[ p]
p=0

K−1

∑

x[n]={x[0],...,x[N −1]}→ !x[n]= x[n− rN ]
r=−∞

∞

∑ ,            for all 0 ≤ n < N

h[n]={h[0],...,h[K −1]}={h[0],...,h[mN −1]}

y[n]={y[0],..., y[N −1]}→ !y[n]= y[n− rN ]
r=−∞

∞

∑ ,            for all 0 ≤ n < N

Example 1: 
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Example 1: 
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Example 1: 

We see that the result of the convolution block of 
length N is a circular convolution of one period of the 
input with the N-block sum of the impulse response 

h[ p+ qN ]
q=0
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Example 1: 
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A long periodic sequence x of period N = 2r (r is an integer) 
is to be convolved with a finite-length sequence h of length K.  
b)  Let K = mN where m is an integer; N is large. How would 

you implement this convolution efficiently? Explain your 
analysis clearly.  Compare the total number of 
multiplications required in your scheme to that in the 
direct implementation of FIR filtering. (Consider the case 
r = 10, m = 10 ).  

y[n]= x[n]∗ h[ p+ qN ]
q=0

m−1

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

What about the computation? 

N=210, K=211 

Example 2: 
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A sequence x = {x[n], n = 0,1,..., N - 1} is given; let X (ejω) be 
its DTFT.  
a)  Suppose N =10. You want to evaluate both X(ej2π 7/12) and 

X(ej2π 3/8). The only computation you can perform is one 
DFT, on any one input sequence of your choice. Can you 
find the desired DTFT values? (Show your analysis and 
explain clearly.)  

Example 2: 
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A sequence x = {x[n], n = 0,1,..., N - 1} is given; let X (ejω) be 
its DTFT.  
a)  Suppose N =10. You want to evaluate both X(ej2π 7/12) and 

X(ej2π 3/8). The only computation you can perform is one 
DFT, on any one input sequence of your choice. Can you 
find the desired DTFT values? (Show your analysis and 
explain clearly.)  

e
j2π ⋅ 7

12 = e
j2π ⋅14

24

e
j2π ⋅3

8 = e
j2π ⋅ 9

24

24-point DFT 
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Example 2: 
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A sequence x = {x[n], n = 0,1,..., N - 1} is given; let X (ejω) be its DTFT.  
b)  Suppose N is large. You want to obtain X (ejω) at the following 2M 

frequencies:  

Here M = 2µ << N =  2v,  (Eg. µ=8, v=14) 
A standard radix-2 FFT algorithm is available. You may execute the FFT 
algorithm once or more than once, and multiplications and additions 
outside of the FFT are allowed, if necessary.  
I.  You want to get the 2M DTFT values with as few total 

multiplications as possible (including those in the FFT). Give 
explicitly the best method you can find for this, with an estimate of 
the total number of multiplications needed in terms of M and N.  

II.  Does your result change if extra multiplications outside of FFTs are 
not allowed?  

ω =
2π
M
m,   m = 0,1,...,M -1    and   ω =

2π
M
m+ 2π

N
,   m = 0,1,...,M -1

Example 2: 
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Here M = 2µ << N =  2v,  (Eg. µ=8, v=14) 
A standard radix-2 FFT algorithm is available. You may execute the FFT 
algorithm once or more than once, and multiplications and additions 
outside of the FFT are allowed, if necessary.  
I.  You want to get the 2M DTFT values with as few total 

multiplications as possible (including those in the FFT). Give 
explicitly the best method you can find for this, with an estimate of 
the total number of multiplications needed in terms of M and N.  

ω =
2π
M
m,   m = 0,1,...,M -1    and   ω =

2π
M
m+ 2π

N
,   m = 0,1,...,M -1

X e
j 2π
M
m+2π
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⎝
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⎞

⎠
⎟⎛

⎝

⎜
⎜

⎞
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⎟
⎟
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N−1

∑ e
− j 2π
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N

⎛

⎝
⎜

⎞

⎠
⎟n

= x[n]
n=0

N−1

∑ e
− j2π
M
n
e
− j2π
M
nm

Example 2: 
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Here M = 2µ << N =  2v,  (Eg. µ=8, v=14) 
A standard radix-2 FFT algorithm is available. You may execute the FFT 
algorithm once or more than once, and multiplications and additions 
outside of the FFT are allowed, if necessary.  
I.  You want to get the 2M DTFT values with as few total 

multiplications as possible (including those in the FFT). Give 
explicitly the best method you can find for this, with an estimate of 
the total number of multiplications needed in terms of M and N.  

ω =
2π
M
m,   m = 0,1,...,M -1    and   ω =

2π
M
m+ 2π

N
,   m = 0,1,...,M -1

X e
j 2π
M
m+2π

N

⎛

⎝
⎜

⎞

⎠
⎟⎛

⎝

⎜
⎜

⎞
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⎟
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∑ e
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nm

=y[n] 

Example 2: 
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Here M = 2µ << N =  2v,  (Eg. µ=8, v=14) 
A standard radix-2 FFT algorithm is available. You may execute the FFT 
algorithm once or more than once, and multiplications and additions 
outside of the FFT are allowed, if necessary.  
I.  You want to get the 2M DTFT values with as few total 

multiplications as possible (including those in the FFT). Give 
explicitly the best method you can find for this, with an estimate of 
the total number of multiplications needed in terms of M and N.  

ω =
2π
M
m,   m = 0,1,...,M -1    and   ω =

2π
M
m+ 2π

N
,   m = 0,1,...,M -1

X e
j 2π
M
m+2π

N

⎛

⎝
⎜

⎞

⎠
⎟⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= x[n]
n=0

N−1

∑ e
− j 2π

M
m+2π

N

⎛

⎝
⎜

⎞

⎠
⎟n

= x[n]
n=0

N−1

∑ e
− j2π
M
n
e
− j2π
M
nm

= y[n]
n=0

N−1

∑ e
− j2π
M
nm
=Y e

j2π
M
m⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Example 2: 
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Here M = 2µ << N =  2v,  (Eg. µ=8, v=14) 
A standard radix-2 FFT algorithm is available. You may execute the FFT 
algorithm once or more than once, and multiplications and additions 
outside of the FFT are allowed, if necessary.  
I.  You want to get the 2M DTFT values with as few total 

multiplications as possible (including those in the FFT). Give 
explicitly the best method you can find for this, with an estimate of 
the total number of multiplications needed in terms of M and N.  

II.  Does your result change if extra multiplications outside of FFTs are 
not allowed?  

ω =
2π
M
m,   m = 0,1,...,M -1    and   ω =

2π
M
m+ 2π

N
,   m = 0,1,...,M -1 Chirp Transform Algorithm 
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Chirp Transform Algorithm 

!  Uses convolution to evaluate the DFT 
!  This algorithm is not optimal in minimizing any 

measure of computational complexity, but it has 
been useful in a variety of applications, particularly 
when implemented in technologies that are well 
suited to doing convolution with a fixed, pre-
specified impulse response.  

!  The CTA is also more flexible than the FFT, since it 
can be used to compute any set of equally spaced 
samples of the Fourier transform on the unit circle.  

37 Penn ESE 531 Spring 2020 - Khanna 

Chirp Transform Algorithm 
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Chirp Transform Algorithm 

39 Penn ESE 531 Spring 2020 - Khanna 0 N-1 
k 

Chirp Transform Algorithm 

40 Penn ESE 531 Spring 2020 - Khanna 

When ω0=0 and M=N, 
we just get the DFT 

Chirp Transform Algorithm 
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Causal FIR CTA  
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Example: Chirp Transform Parameters 

!  We have a finite-length sequence x[n] that is 
nonzero only on the interval n = 0, ..., 25, (Length 
N=26) and we wish to compute 16 samples of the 
DTFT X(ejω) at the frequencies ωk = 2π/27 + 
2πk/1024 for k = 0, . . . , 15.  

43 Penn ESE 531 Spring 2020 - Khanna 

Circular Convolution 

Linear Convolution with aliasing! 

Penn ESE 531 Spring 2020 - Khanna 44 

Circular Convolution 

!  Circular Convolution: 

For two signals of length N 
  

  

45 
Penn ESE 531 Spring 2020 – Khanna 
Adapted from M. Lustig, EECS Berkeley 

Compute Circular Convolution Sum 

46 
Penn ESE 531 Spring 2020 – Khanna 
Adapted from M. Lustig, EECS Berkeley 

Compute Circular Convolution Sum 

47 
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Adapted from M. Lustig, EECS Berkeley 

Compute Circular Convolution Sum 

48 
Penn ESE 531 Spring 2020 – Khanna 
Adapted from M. Lustig, EECS Berkeley 
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Compute Circular Convolution Sum 

49 

y[0]=2 

Penn ESE 531 Spring 2020 – Khanna 
Adapted from M. Lustig, EECS Berkeley 

Compute Circular Convolution Sum 

50 

y[0]=2 
y[1]=2 
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Adapted from M. Lustig, EECS Berkeley 

Compute Circular Convolution Sum 

51 

y[0]=2 
y[1]=2 
y[2]=3 
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Adapted from M. Lustig, EECS Berkeley 

Compute Circular Convolution Sum 

52 

y[0]=2 
y[1]=2 
y[2]=3 
y[3]=4 
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Adapted from M. Lustig, EECS Berkeley 

Result 

53 

y[0]=2 
y[1]=2 
y[2]=3 
y[3]=4 
 
 

Penn ESE 531 Spring 2020 – Khanna 
Adapted from M. Lustig, EECS Berkeley 

Linear Convolution 

!  We start with two non-periodic sequences: 

"  E.g. x[n] is a signal and h[n] a filter’s impulse response 

!  We want to compute the linear convolution: 

"  y[n] is nonzero for 0 ≤ n ≤ L+P-2 with length M=L+P-1 

54 
Penn ESE 531 Spring 2020 – Khanna 
Adapted from M. Lustig, EECS Berkeley 

Requires LP multiplications 
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Linear Convolution via Circular Convolution 

!  Zero-pad x[n] by P-1 zeros 

!  Zero-pad h[n] by L-1 zeros 

!  Now, both sequences are length M=L+P-1 

55 
Penn ESE 531 Spring 2020 – Khanna 
Adapted from M. Lustig, EECS Berkeley 

Circular Conv. via Linear Conv. w/ Aliasing 

!  If the DTFT X(ejω) of a sequence x[n] is sampled at 
N frequencies ωk=2πk/N, then the resulting 
sequence X[k] corresponds to the periodic sequence 

!  And             is the 
DFT of one period given as  

56 Penn ESE 531 Spring 2020 - Khanna 

Circular Conv. via Linear Conv. w/ Aliasing 

!  If x[n] has length less than or equal to N, then 
xp[n]=x[n] 

!  However if the length of x[n] is greater than N, this 
might not be true and we get aliasing in time 
"  N-point convolution results in N-point sequence 

57 Penn ESE 531 Spring 2020 - Khanna 

Circular Conv. via Linear Conv. w/ Aliasing 

58 Penn ESE 531 Spring 2020 - Khanna 

!  Given two N-point sequences (x1[n] and x2[n]) and 
their N-point DFTs (X1[k] and X2[k]) 

!  The N-point DFT of x3[n]=x1[n]*x2[n] is defined as 

X 3[k]= X 3(e
j(2πk /N ) )

Circular Conv. via Linear Conv. w/ Aliasing 

59 Penn ESE 531 Spring 2020 - Khanna 

!  Given two N-point sequences (x1[n] and x2[n]) and 
their N-point DFTs (X1[k] and X2[k]) 

!  The N-point DFT of x3[n]=x1[n]*x2[n] is defined as 

!  And X3[k]=X1[k]X2[k], where the inverse DFT of 
X3[k] is 

X 3[k]= X 3(e
j(2πk /N ) )

Circular Conv. as Linear Conv. w/ Aliasing 

60 Penn ESE 531 Spring 2020 - Khanna 
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Circular Conv. as Linear Conv. w/ Aliasing 

61 Penn ESE 531 Spring 2020 - Khanna 

!  Thus 

!  The N-point circular convolution is the sum of 
linear convolutions shifted in time by N 

x3p[n]=
x1[n− rN ]* x2[n− rN ]

r=−∞

∞

∑ 0 ≤ n ≤ N −1

0 else

⎧

⎨
⎪

⎩
⎪

x3p[n]= x1[n]⊗ x2[n]N 

Example 1: 

!  Let 

!  The N=L=6-point circular convolution results in 

62 Penn ESE 531 Spring 2020 - Khanna 

Example 1: 

!  Let 

!  The N=L=6-point circular convolution results in 
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Example 1: 

!  Let 

!  The linear convolution results in 

64 Penn ESE 531 Spring 2020 - Khanna 

Example 1: 

!  Let 

!  The linear convolution results in 
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Example 1: 

!  The sum of N-shifted linear convolutions equals the N-point 
circular convolution 

66 Penn ESE 531 Spring 2020 - Khanna 
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Example 1: 

!  The sum of N-shifted linear convolutions equals the N-point 
circular convolution 
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Example 1: 

!  The sum of N-shifted linear convolutions equals the N-point 
circular convolution 

68 Penn ESE 531 Spring 2020 - Khanna 

Example 1: 

!  If I want the circular convolution and linear 
convolution to be the same, what do I do? 
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Example 1: 

!  If I want the circular convolution and linear 
convolution to be the same, what do I do? 
"  Take the N=2L-point circular convolution 
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Example 1: 

!  If I want the circular convolution and linear 
convolution to be the same, what do I do? 
"  Take the N=2L-point circular convolution 

71 Penn ESE 531 Spring 2020 - Khanna 

Example 2: 

!  Let 

72 Penn ESE 531 Spring 2020 - Khanna 
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Example 2: 

!  Let 

 

 
!  What does the L-point circular convolution look like? 

73 Penn ESE 531 Spring 2020 - Khanna 

Linear convolution 

Example 2: 

!  Let 

 

 
!  What does the L-point circular convolution look like? 
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Linear convolution 

Example 2: 

!  The L-shifted linear convolutions 
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Example 2: 

!  The L-shifted linear convolutions 

 

 

76 Penn ESE 531 Spring 2020 - Khanna 

Big Ideas 

77 
Penn ESE 531 Spring 2020 – Khanna 
Adapted from M. Lustig, EECS Berkeley 

!  Discrete Fourier Transform (DFT) 
"  For finite signals assumed to be zero outside of defined length 
"  N-point DFT is sampled DTFT at N points 
"  Useful properties allow easier linear convolution 

!  Fast Fourier Transform 
"  Enable computation of an N-point DFT (or DFT-1) with the order 

of just N· log2 N complex multiplications.  

!  Fast Convolution Methods 
"  Use circular convolution (i.e DFT) to perform fast linear convolution 

"  Overlap-Add, Overlap-Save 

"  Circular convolution is linear convolution with aliasing 

!  Design DSP methods to minimize computations! 

Admin 

!  Read adaptive filter reference for next lecture 
"  Find on course calendar 

 
!  Project: Adaptive Filtering 

"  Handout posted over the weekend 
"  Work in pairs 

"  Use Piazza to find partners 

"  Will discuss next lecture 
"  Read handout linked on calendar before class! 
"  Additional resources in Canvas Files 

"  Due 4/28 

78 
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Adapted from M. Lustig, EECS Berkeley 



14 

Penn ESE 570 Spring 2020 - Khanna 79 


