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a0 Compressive Sampling/Sensing
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Compressive Sampling

Anythin
. ything —
0
0 What is the rate you need to sample at?
= At least Nyquist
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Compressive Sampling

Something
| T
0
0 What is the rate you need to sample at?
= Maybe less than Nyquist...

Penn ESE 531 Spring 2020 — Khanna
Adapted from M. Lustig, EECS Berkeley



First: Compression

0 Standard approach

= First collect, then compress

= Throw away unnecessary data
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First: Compression

a0 Examples

o Audio — 10x
= Raw audio: 44.1kHz, 16bit, stereo = 1378 Kbit/sec
= MP3: 44.1kHz, 16 bit, stereo = 128 Kbit/sec

= Images — 22x

= Raw image (RGB): 24bit/pixel

= JPEG: 1280x960, normal = 1.09bit/pixel
s Videos — 75x

= Raw Video: (480x360)p/frame x 24b/p x 24frames/s + 44.1kHz
x 16b x 2 = 98,578 Kbit/s

= MPEG4: 1300 Kbit/s
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First: Compression

0 Almost all compression algorithm use transform
coding
= mp3: DCT
= JPEG: DCT
= JPEG2000: Wavelet
s MPEG: DCT & time-difference
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First: Compression

0 Almost all compression algorithm use transform
coding
= mp3: DCT
= JPEG: DCT

s JPEG2000: Wavelet E A
s MPEG: DCT & time-difference
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: Sparse Transform
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Sparse Transform
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Sparsity
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Signal Processing Trends

0 Traditional DSP = sample first, ask questions later
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Signal Processing Trends

0 Traditional DSP = sample first, ask questions later

o Explosion in sensor technology/ubiquity has caused
two trends:

= Physical capabilities of hardware are being stressed,
increasing speed/resolution becoming expensive

= gigahertz+ analog-to-digital conversion
s accelerated MRI
= industrial imaging

= Deluge of data

= camera arrays and networks, multi-view target databases,
streaming video...
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Signal Processing Trends

0 Traditional DSP = sample first, ask questions later

o Explosion in sensor technology/ubiquity has caused
two trends:
= Physical capabilities of hardware are being stressed,

increasing speed/resolution becoming expensive

= gigahertz+ analog-to-digital conversion
s accelerated MRI
= industrial imaging

= Deluge of data

= camera arrays and networks, multi-view target databases,
streaming video...

0 Compressive Sensing 2 sample smarter, not faster
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Compressive Sensing/Sampling

0 Standard approach

= First collect, then compress

= Throw away unnecessary data
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Compressive Sensing

a Shannon/Nyquist theorem is pessimistic

= 2Xbandwidth is the worst-case sampling rate — holds
uniformly for any bandlimited data

= sparsity/compressibility is irrelevant

= Shannon sampling based on a linear model, compression
based on a nonlinear model

0 Compressive sensing

= new sampling theory that leverages compressibility

= key roles played by new uncertainty principles and
randomness

Penn ESE 531 Spring 2020 - Khanna
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Sensing to Data

sensor

Data
Converter

ADS5485

TEXAS
INSTRUMENTS

“fast” ADC data compression

Data
Converter

i§ TEXAS
INSTRUMENTS

“compressive” “slow” ADC
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Compressive Sampling

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in most cases
exactly recover
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Compressive Sampling

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in most cases
exactly recover

Sparse signal in time Frequency spectrum
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Compressive Sampling

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in most cases
exactly recover

Undersampled in time
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Compressive Sampling

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in most cases
exactly recover

Undersampled in time
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Compressive Sampling

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in most cases
exactly recover

Undersampled in frequency

ndersampled in time = .
Undersampled (reconstructed in time with IFFT)
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Compressive Sampling

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in most cases

exactly recover

Undersampled in time

Undersampled in frequency
(reconstructed in time with IFFT)
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Compressive Sampling: Simple
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Compressive Sampling

0 Sense signal M times
0 Recover with linear

Input signal with undersampled measurements circled {~17.5% of Myquist samples)
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Compressive Sampling
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Fxample: Sum of Sinusoids

Fecovered spectrum using L1 minimization

J o Two relevant “knobs”
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Example: Increasing M
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“xample: Increasing M

(mHz)
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Example: Increasing T
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“xample: Increasing T
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Numerical Recovery Curves

a0 Sense S-sparse signal of length N randomly M times
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o} N=256 ]
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= In practice, perfect recovery occurs when M = 2§ for N = 7000
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A Non-Linear Sampling Theorem

a0 Exact Recovery Theorem (Candes, R, Tao, 2004):

= Select M sample locations {7 } “at random” with

M > Const-Slog N
0 Take time-domain samples (measurements)

Ym = Zo(tm)

a Solve

rr}Ein |Z|le, subjectto z(tm) =ym, m=1,...,.M

0 Solution is exactly recovered signal with extremely

high probability
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A Non-Linear Sampling Theorem

a0 Exact Recovery Theorem (Candes, R, Tao, 2004):

= Select M sample locations {7 } “at random” with

M > Const - Slog N
0 Take time-domain samples (measurements)
Ym = Z0(tm)

a Solve

min |Z|le, subjectto z(tm) =ym, m=1,...,.M

0 Solution is exactly recovered signal with extremely
high probability
M > C- u?(P,¥)Slog N
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Power (uW)

Power (uW)

Biometric -

“xample:
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Parkinson’s Tremors
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0 6 Subjects of real tremor
data

= collected using low intensity
velocity-transducing laser
recording aimed at reflective
tape attached to the subjects’
tinger recording the finger
velocity

s All show Parkinson’s tremor

in the 4-6 Hz range.

= Subject 8 shows activity at
two higher frequencies

= Subject 4 appears to have two
tremors very close to each
other in frequency
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Real Data

Compressive Sampling

Recovered Frequency Spectrum: Subject 8

Recowvered Frequency Spectrum: Subject | Time Signal: Subject 8

Time Signal: Subject B
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: Biometric Example: Parkinson’s

Tremors
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Biometric Example: Parkinson’s Tremors

Frequency error in tremor detection

Subject Number

Tremors detected
within 100 mHz

randomly sample
20% of the
Nyquist required
samples

Requires post processing to randomly sample!
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Implementing Compressive Sampling

a0 Devised a way to randomly sample 20% of the Nyquist
required samples and still detect the tremor frequencies
within 100mHz

= Requires post processing to randomly sample!

a0 Implement hardware on chip to “choose” samples in real
time
= Only write to memory the “chosen” samples
= Design random-like sequence generator
= Only convert the “chosen” samples

= Design low energy ADC
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CS Theory

Why does it work?

L) L]
#Penn,
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Sampling

e Signal x is K-sparse in basis/dictionary I
- WLOG assume sparse in space domain YV =]

e Sampling
b =]

N x 1

sparse
signal

N x 1

measurements

K

nonzero
entries

T TTTTE T
EEE EEEEE EEYEEERS

N x N
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Compressive Sampling

e When data is sparse/compressible, can directly
acquire a condensed representation with
no/little information loss through

linear dimensionality reduction y = Px
Y P X

M x 1 — H Nx1
measurements - Sparse
| signal
M x N B K

H nonzero

K< MKN u entries
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How Can It Work?

e Projection ¢

Y b
not full rank... i — -
M <N

... and so
loses information in general

e Ex: Infinitely many &’ s map to the same Yy
(null space)

Penn ESE 531 Spring 2020 - Khanna
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How Can It Work?

e Projection
not full rank...

M <N

... and so K columns
loses information in general

X

e But we are only interested in sparse vectors

Penn ESE 531 Spring 2020 - Khanna
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How Can It Work?

e Projection ¢
not full rank...

D
EI
M < N

... and so K columns
loses information in general

e But we are only interested in sparse vectors

e @ is effectively MxK
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How Can It Work?

e Projection P
not full rank...

M <N

... and so K columns
loses information in general

e But we are only interested in sparse vectors

e Design @ so that each of its MxK submatrices
are full rank (ideally close to orthobasis)

- Restricted Isometry Property (RIP)

Penn ESE 531 Spring 2020 - Khanna
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: RIP

e Draw @ at random
- iid Gaussian
- iid Bernoulli £1

K columns

e Then @ has the RIP with high probability

provided
M = O(Klog(N/K)) < N
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CS Signal Recovery

D

Y
e Goal: Recover signal & '.'ﬁ
from measurements Y ! = " . : I
m

=w

e Problem: Random
projection ¢ not full rank
(ill-posed inverse problem)

e Solution: Exploit the sparse/compressible
geometry of acquired signal &

Penn ESE 531 Spring 2020 - Khanna
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CS Signal Recovery

e Random projection P
not full rank

<
©

e Recovery problem:
given y = Pz
find x

EEE EEEEECEESEEERS

e Null space

e Search in null space
for the “best” &
according to some
criterion

- ex: least squares

{2/ y= Pz’
(N-M)-dim hyperplane
at random angle

Penn ESE 531 Spring 2020 - Khanna
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L, Signal Recovery

e Recovery: given y = Pz
(ill-posed inverse problem) find X (sparse)
e Optimization: T = arg mip |z ||2
=odx

e Closed-form solution: T

(CDT(D)_leTy

e Wrong answer! RN

Penn ESE 531 Spring 2020 - Khanna



L, Signal Recovery

e Recovery:
(ill-posed inverse problem)

e Optimization:
e Correct!
- -,

)

e But NP-Complete alg

Penn ESE 531 Spring 2020 - Khanna

given y = Px
find x (sparse)

r = arg min ||z||o

y=>x

“find sparsest vector
in translated nullspace”

RN
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L, Signal Recovery

e Recovery: given y = Px
(ill-posed inverse problem) find X (sparse)
e Optimization: T = arg min ||z||1
y=>x

e Convexify the ﬁo optimization
e Correct!

e Polynomial time alg
(linear programming)

e Much recent alg progress
- greedy, Bayesian approaches, ...
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Universality

e Random measurements can be used for signals
sparse in any basis

r = WV

&

Ill.llll.l.lllQ
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Universality

e Random measurements can be used for signals
sparse in any basis

y = bxr = PV«

Ill.llll.l.lllQ
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Universality

e Random measurements can be used for signals
sparse in any basis

y:CDaj:CD\UOé:CD/CE

-§
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N x 1

sparse
coefficient
vector

K

nonzero
entries

Ill.llll.l.lllQ
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Reference Slide
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Big Ideas

0 Compressive Sampling
= Integrated sensing/sampling, compression and processing

= Based on sparsity and incoherency
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Admin

o Final Project due — Apr 28

= TA advice — “The report takes time. Leave time for it.”

0 Last day of TA office hours = Apr 28

s Piazza still available

s Review session for exam TBD
0 Last day of Tania office hours — May 1st
0 Final Exam - May 7%
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Final Exam Admin

0 Final Exam - 5/7 (3pm-5pm)
= In Canvas

Will have a 2 hr window to complete within a 12 hr time
block

= Open course notes and textbook, but cannot communicate with
each other about the exam

Students will have randomized and different questions
Reminder, it is not in your best interest to share the exam
= Old exams posted on old course websites

s Covers Lec 1- 20

Does not include lec 12 (data converters and noise shaping)
or IIR Filters
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