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Compressive Sensing
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Today

o Compressive Sampling/Sensing
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Compressive Sampling

Anything

T
0

0 What is the rate you need to sample at?
= At least Nyquist
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: Compressive Sampling
Something
T t
0
0 What is the rate you need to sample at?
= Maybe less than Nyquist...
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First: Compression
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0 Standard approach

= First collect, then compress

= Throw away unnecessary data

1001101001101

0100110100010
0010101101010
1010101100101
1101110111010
1010110110110
10100111111
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First: Compression

eelsieeels

0 Examples

= Audio — 10x
= Raw audio: 44.1kHz, 16bit, stereo = 1378 Kbit/sec
= MP3: 44.1kHz, 16 bit, stereo = 128 Kbit/sec

= Images — 22x
« Raw image (RGB): 24bit/pixel
= JPEG: 1280x960, normal = 1.09bit/pixel

= Videos — 75x
= Raw Video: (480x360)p/frame x 24b/p x 24frames/s + 44.1kHz

x 16b x 2 = 98,578 Kbit/s

= MPEG#4: 1300 Kbit/s
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First: Compression
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0 Almost all compression algorithm use transform

coding

= mp3: DCT

= JPEG: DCT

= JPEG2000: Wavelet

= MPEG: DCT & time-difference
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First: Compression

oelsiese’s

a Almost all compression algorithm use transform

coding M
-1
y
&

= mp3: DCT
=l

= JPEG: DCT
= JPEG2000: Wavelet
= MPEG: DCT & time-difference
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Sparse Transform
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¢ Sparse Transform
:
-
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Difference l
TRLHILN
. 50 100 50 200 250 0
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¢ Signal Processing Trends
0 Traditional DSP = sample first, ask questions later
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Signal Processing Trends

oelsiese’s

0 Traditional DSP = sample first, ask questions later

a Explosion in sensor technology/ubiquity has caused
two trends:
= Physical capabilities of hardware are being stressed,
increasing speed/resolution becoming expensive

= gigahertz+ analog-to-digital conversion
= accelerated MRI
= industrial imaging

= Deluge of data

= camera arrays and networks, multi-view target databases,
streaming video. ..
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Signal Processing Trends

oelsiese’s

0 Traditional DSP = sample first, ask questions later

o Explosion in sensor technology/ubiquity has caused
two trends:
= Physical capabilities of hardware are being stressed,
increasing speed/resolution becoming expensive

= gigahertz+ analog-to-digital conversion
= accelerated MR
= industrial imaging

= Deluge of data
= camera arrays and networks, multi-view target databases,

streaming video...

o Compressive Sensing > sample smarter, not faster

Penn ESE 531 Spring 2020 - Khanna
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Compressive Sensing/Sampling

o Standard approach

= First collect, then compress

= Throw away unnecessary data

1001101001101
0001001110101

101000110100
1101011
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Compressive Sensing

seseees

a Shannon/Nyquist theorem is pessimistic

2xbandwidth is the worst-case sampling rate — holds
uniformly for any bandlimited data

sparsity/compressibility is irrelevant

Shannon sampling based on a linear model, compression
based on a nonlinear model

o Compressive sensing
= new sampling theory that leverages compressibility

= key roles played by new uncertainty principles and
randomness

Penn ESE 531 Spring 2020 - Khanna
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Sensing to Data

Data
Converter I
Aossiss

o

v

sensor “fast” ADC data compression

Data
Converter
Avssias
-
“compressive” “slow” ADC
sensor
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Compressive Sampling

eelsieeels

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in most cases
exactly recover
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Compressive Sampling

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in most cases
exactly recover

Sparse signal in time Frequency spectrum

N ) 0 05 1
Time ()

oelsiese’s

Compressive Sampling

a Sample at lower than the Nyquist rate and still
accurately recover the signal, and in most cases
exactly recover

Undersampled in time

20
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Compressive Sampling

o Sample at lower than the Nyquist rate and still
accurately recover the signal, and in most cases
exactly recover

Undersampled in time

E N -
Time ()
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Compressive Sampling

o Sample at lower than the Nyquist rate and still
accurately recover the signal, and in most cases
exactly recover

Undersampled in frequency

Undersampled in time (reconstructed in time with IFFT)

0 [ Eo R ) 0o 10 @ % 4 o &

£
Time (s) Time (5)
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Compressive Sampling

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in most cases
exactly recover

Undersampled in frequency

Undersampled in time (reconstructed in time with IFFT)

W w0 @ w0 B e o 0w @ 4 80 e
Time (5 Time (5)

Requires sparsity and incoherent sampling
23
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Compressive Sampling: Simple Example

Time (s)
Exact and Recovered Frequency Spectrums
*

0,08

0,08
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Compressive Sampling

Input signal with undersampled measurements circled (~17.5% of Nyquist samples)

P

ssssssssssss

Time (5 program

0 Sense signal M times

o Recover with linear

minZIg(w)I subjectto g(tn) = ftm), Mm=1,.,M

25

Example: Sum of Sinusoids

Recovered spectrum using L1 minimization

W Ww MW!

M\

o Two relevant “knobs”
= percentage of Nyquist
samples as altered by
adjusting number of

samples, M

v

b

Froquency ()

= input signal duration, T
= Data block size

27

Example: Increasing M

Rec: d p ctrur mp erforr &elur increasing samples
“
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Compressive Sampling

K

o Recover with linear
program

minZIg(w)l subjectto g(tn) = fty), m=1,..,M

0 Sense signal M times

K

fw)= Za&(w ) c»f(t) Zue"‘”

=
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Example: Increasing M
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i Example: Increasing T
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Example: Increasing T

Recovered spectrum performance for increasing T
. . "

w2t ©
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ol { * forrmax decreasing
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Numerical Recovery Curves

0 Sense S-sparse signal of length N randomly M times

o
"~ N=256
i N=512
. N=1024
% success |
5
o
«
]
P
T R —

= In practice, perfect recovery occurs when M = 25 for N = 7000
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A Non-Linear Sampling Theorem

o Exact Recovery Theorem (Candes, R, Tao, 2004):

= Select M sample locations {z,} “at random” with

M > Const-SlogN
o Take time-domain samples (measurements)

Ym = To(tm)
o Solve

rnmin||a’:||z1 subject to  Z(tm) =Ym, m=1,...,.M

o Solution is exactly recovered signal with extremely

high probability

Penn ESE 531 Spring 2020 - Khanna
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¢ A Non-Linear Sampling Theorem
:
o Exact Recovery Theorem (Candes, R, Tao, 2004):
= Select M sample locations {#,} “at random” with
M > Const-Slog N
0 Take time-domain samples (measurements)
Ym = 20(tm)
a Solve
min ||Z||¢, subjectto z(tm) =Ym, m=1,...,.M
z
0 Solution is exactly recovered signal with extremely
high probability
Penn ESE 531 Spring 2020 - Khanna 33
L . . R
¢ Biometric Example: Parkinson’s Tremors
:
Subject 2 os Subject 4 o7 Subject 5 a6 Subiects of real tremor
04 06! data
s .
£ S0 04 = collected using low intensity
' velocity-transducing laser
2 g S reconing amed a seecive
as 01 o tape attached o the subjects’
finger recording the finger
20 @ 20 ) 20 40 wvelocity
Frequency (Hz) Frequency (Hz) Frequency (Hz) Y L
L, suects Subject 7 Subjecte * oy Pasinson’ nor
os 0a = Subject 8 shows activity at
o :
Sos - - two higher frequencies
Soa 2., 209 u Subject 4 appears to have two
2o f T ttemors very close o cach
& o2 = gos) <, other in frequency
o
i
= o o
ey 42 Fromuenc 42 Fromncy (2
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Compressive Sampling: Real Data

Time Signal: Subject & a o Subject|

Frequency (He)

Time (5)

Frequency (Hz)

Sujects




Biometric Example: Parkinson’s Tremors
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: | " " W‘!\ﬂ*‘t

e
! ] y
{

b Y

e ‘IW\\_J%HW lid

=

" C=10.5, T=30

20% Nyquist required samples

Biometric Example: Parkinson’s Tremors

oelsiese’s

Frequency error in tremor detection

" Tremors detected

) within 100 mHz
iw “ randomly sample
P 20% of the
5 . J Nyquist required
samples
: ‘ 5Sul)]ecl Numbevs ! :

Requires post processing to randomly sample!

Implementing Compressive Sampling

seseees

0 Devised a way to randomly sample 20% of the Nyquist
required samples and still detect the tremor frequencies
within 100mHz

= Requires post processing to randomly sample!

o Implement hardware on chip to “choose” samples in real
time
= Only write to memory the “chosen” samples
= Design random-like sequence generator
= Only convert the “chosen” samples

= Design low energy ADC

39

CS Theory

Why does it work?

& Penn

Penn ESE 531 Spring 2020 - Khanna

¢ Sampling
e Signal x is K-sparse in basis/dictionary I/
- WLOG assume sparse in space domain V=]
e Sampling
Y b=1 =z
Nx1
N X 1 = sparse
measurements signal
K
nonzero
entries
N x N
Penn ESE 531 Spring 2020 - Khanna 41

Compressive Sampling

eelsieeels

e When data is sparse/compressible, can directly
acquire a condensed representation with
no/little information loss through

linear dimensionality reduction Yy = Dy
Mx1 Nx1
measurements sparse
signal
nonzero
K< M < N entries
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How Can It Work?

oelsiese’s

e Projection @
not full rank

) () x
M< N i -

... and so
loses information in general

¢ Ex: Infinitely many X’s map to the same ¥y
(null space)
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How Can It Work?

oelsiese’s

Yy o} T
e Projection @
not full rank... i —
VAN
... and so K columns
loses information in general
T

e But we are only interested in sparse vectors

Penn ESE 531 Spring 2020 - Khanna 44
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How Can It Work?

x
e Projection ¢ o2
not full rank... % I
WAl

... and so K columns
loses information in general

* But we are only interested in sparse vectors

o & is effectively MxK

Penn ESE 531 Spring 2020 - Khanna 45
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How Can It Work?

©
8

e Projection @
not full rank...

TR
I

M <N

... and so K columns
loses information in general

¢ But we are only interested in sparse vectors

¢ Design @ so that each of its MxK submatrices
are full rank (ideally close to orthobasis)
- Restricted Isometry Property (RIP)

RIP

eelsieeels

P
e Draw ¢ at random s
- iid Gaussian "
- iid Bernoulli £1 . |

K columns

e Then ® has the RIP with high probability
provided
M = O(Klog(N/K)) < N
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¢ CS Signal Recovery
Yy b T
e Goal: Recover signal T |
from measurements Y i: ':::;-E !--1
-a

¢ Problem: Random
projection @ not full rank
(ill-posed inverse problem)

¢ Solution: Exploit the sparse/compressible
geometry of acquired signal
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CS Signal Recovery
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Random projection Y
not full rank

_ _'-'-I'% -
Recovery problem: 'ﬂ *
given y = Pz
find x

Null space

Search in null space

for the “best”

according to some C ,

criterion {z fy= dz'}

- ex: least squares (N-M)-dim hyperplane
at random angle

Penn ESE 531 Spring 2020 - Khanna
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L, Signal Recovery
e Recovery: given y = dx
(ill-posed inverse problem) find x (sparse)
» Optimization: Z = arg min ||z||2
y=oz

Closed-form solution:

7= (oTd) 10Ty

Wrong answer! RN
| T X

B e
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: L, Signal Recovery
e Recovery: given y = Pz
(ill-posed inverse problem) find x (sparse)

e Optimization: Z = arg min ||zl
y=bz

“find sparsest vector
in translated nullspace”

e Correct!

||||\,x 4 o

8)

e But NP-Complete alg

Penn ESE 531 Spring 2020 - Khanna
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L, Signal Recovery

Recovery: given y = Pz
(ill-posed inverse problem) find x (sparse)

.

Optimization: z =arg min ||z|1
y=oz

Convexify the £ optimization

Correct!

RN
¢ Polynomial time alg N
(linear programming) 'y
T
* Much recent alg progress
- greedy, Bayesian approaches, ...
Penn ESE 531 Spring 2020 - Khanna 52
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Universality

* Random measurements can be used for signals
sparse in any basis

= Wa

Penn ESE 531 Spring 2020 - Khanna
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Universality

* Random measurements can be used for signals
sparse in any basis

y=dxr =>PVa

Y (oo} \\} o'

_br u
|-
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Universality

¢ Random measurements can be used for signals
sparse in any basis

y=dx = dVa=Pa

4 (ol o
_ Nx1
—_ .l. sparse
u u coefficient
vector

K

nonzero
entries
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Reference Slide
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Big Ideas

o Compressive Sampling
= Integrated sensing/sampling, comptession and processing

= Based on sparsity and incoherency

Admin

seseees

0 Final Project due = Apr 28™
= TA advice — “The report takes time. Leave time for it.”
0 Last day of TA office hours = Apr 28
= DPiazza still available
= Review session for exam TBD
o Last day of Tania office hours — May 1st
0 Final Exam = May 7t

Final Exam Admin

eelsieeels

o Final Exam - 5/7 (3pm-5pm)
= In Canvas
= Will have a 2 hr window to complete within a 12 hr time
block
= Open course notes and textbook, but cannot communicate with
each other about the exam
= Students will have randomized and different questions
= Reminder, it is not in your best interest to share the exam
= Old exams posted on old course websites
= Covers Lec 1- 20

= Does not include lec 12 (data converters and noise shaping)
or IIR Filters
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