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ESE 531: Digital Signal Processing 

Lec 24: April 23, 2020 
Compressive Sensing 
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Today 

!  Compressive Sampling/Sensing 
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Compressive Sampling 

!  What is the rate you need to sample at? 
"  At least Nyquist 
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Compressive Sampling 

!  What is the rate you need to sample at? 
"  Maybe less than Nyquist… 
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First: Compression 

!  Standard approach 
"  First collect, then compress  

"  Throw away unnecessary data 
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First: Compression 

!  Examples 
"  Audio – 10x 

"  Raw audio: 44.1kHz, 16bit, stereo = 1378 Kbit/sec 
"  MP3: 44.1kHz, 16 bit, stereo = 128 Kbit/sec 

"  Images – 22x 
"  Raw image (RGB): 24bit/pixel 
"  JPEG: 1280x960, normal = 1.09bit/pixel 

"  Videos – 75x 
"  Raw Video: (480x360)p/frame x 24b/p x 24frames/s + 44.1kHz 

x 16b x 2 = 98,578 Kbit/s 
"  MPEG4: 1300 Kbit/s 
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First: Compression 
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!  Almost all compression algorithm use transform 
coding  
"  mp3: DCT  
"  JPEG: DCT  
"  JPEG2000: Wavelet  
"  MPEG: DCT & time-difference 
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First: Compression 
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!  Almost all compression algorithm use transform 
coding  
"  mp3: DCT  
"  JPEG: DCT  
"  JPEG2000: Wavelet  
"  MPEG: DCT & time-difference 
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Sparse Transform 
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Sparse Transform 
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Sparsity 
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Signal Processing Trends 

!  Traditional DSP # sample first, ask questions later 
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Signal Processing Trends 

!  Traditional DSP # sample first, ask questions later 
!  Explosion in sensor technology/ubiquity has caused 

two trends: 
"  Physical capabilities of hardware are being stressed, 

increasing speed/resolution becoming expensive 
"  gigahertz+ analog-to-digital conversion 
"  accelerated MRI 
"  industrial imaging 

"  Deluge of data 
"  camera arrays and networks, multi-view target databases, 

streaming video… 
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Signal Processing Trends 

!  Traditional DSP # sample first, ask questions later 
!  Explosion in sensor technology/ubiquity has caused 

two trends: 
"  Physical capabilities of hardware are being stressed, 

increasing speed/resolution becoming expensive 
"  gigahertz+ analog-to-digital conversion 
"  accelerated MRI 
"  industrial imaging 

"  Deluge of data 
"  camera arrays and networks, multi-view target databases, 

streaming video... 

!  Compressive Sensing # sample smarter, not faster 
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Compressive Sensing/Sampling 

!  Standard approach 
"  First collect, then compress  

"  Throw away unnecessary data 
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Compressive Sensing 

!  Shannon/Nyquist theorem is pessimistic 
"  2×bandwidth is the worst-case sampling rate — holds 

uniformly for any bandlimited data 
"  sparsity/compressibility is irrelevant 
"  Shannon sampling based on a linear model, compression 

based on a nonlinear model 

!  Compressive sensing 
"  new sampling theory that leverages compressibility 
"  key roles played by new uncertainty principles and 

randomness 
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Sensing to Data 

17 Penn ESE 531 Spring 2020 - Khanna 

Compressive Sampling 

!  Sample at lower than the Nyquist rate and still 
accurately recover the signal, and in most cases 
exactly recover 
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Sparse signal in time Frequency spectrum 

Compressive Sampling 

!  Sample at lower than the Nyquist rate and still 
accurately recover the signal, and in most cases 
exactly recover 
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Undersampled in time 

Compressive Sampling 

!  Sample at lower than the Nyquist rate and still 
accurately recover the signal, and in most cases 
exactly recover 
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Undersampled in time 

Compressive Sampling 

!  Sample at lower than the Nyquist rate and still 
accurately recover the signal, and in most cases 
exactly recover 
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Undersampled in time Undersampled in frequency 
(reconstructed in time with IFFT) 

Compressive Sampling 

!  Sample at lower than the Nyquist rate and still 
accurately recover the signal, and in most cases 
exactly recover 
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Undersampled in time 

Compressive Sampling 

!  Sample at lower than the Nyquist rate and still 
accurately recover the signal, and in most cases 
exactly recover 
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Undersampled in frequency 
(reconstructed in time with IFFT) 

Requires sparsity and incoherent sampling 

Compressive Sampling: Simple Example 
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Compressive Sampling 

!  Sense signal M times 
!  Recover with linear 

program 
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Compressive Sampling 

!  Sense signal M times 
!  Recover with linear 

program 
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Example: Sum of Sinusoids 

!  Two relevant “knobs” 
"  percentage of Nyquist 

samples as altered by 
adjusting number of 
samples, M 

"  input signal duration, T 
"  Data block size  
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7% 14% 17.5% 

20.9% 34.7% 51.9% 

Example: Increasing M 
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$  ferr,max within 10 mHz 
$ perr,max decreasing 

Example: Increasing M 
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T=5 T=10 T=15 

T=30 T=60 T=120 

 
Example: Increasing T 
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$  ferr,max decreasing 
$ perr,max decreasing 

31 

 
Example: Increasing T Numerical Recovery Curves 

!  Sense S-sparse signal of length N randomly M times 

"  In practice, perfect recovery occurs when M ≈ 2S for N ≈ 1000 
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N=256 
N=512 
N=1024  

A Non-Linear Sampling Theorem 

!  Exact Recovery Theorem (Candès, R, Tao, 2004): 
"  Select M sample locations {tm} “at random” with 

!  Take time-domain samples (measurements) 

!  Solve 

!  Solution is exactly recovered signal with extremely 
high probability 
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A Non-Linear Sampling Theorem 

!  Exact Recovery Theorem (Candès, R, Tao, 2004): 
"  Select M sample locations {tm} “at random” with 

!  Take time-domain samples (measurements) 

!  Solve 

!  Solution is exactly recovered signal with extremely 
high probability 
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 M > C·μ2(Φ,Ψ)·S·log N 

Biometric Example: Parkinson’s Tremors 

!  6 Subjects of real tremor 
data 

"  collected using low intensity 
velocity-transducing laser 
recording aimed at reflective 
tape attached to the subjects’ 
finger recording the finger 
velocity 

"  All show Parkinson’s tremor 
in the 4-6 Hz range.   

"  Subject 8 shows activity at 
two higher frequencies 

"  Subject 4 appears to have two 
tremors very close to each 
other in frequency  
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Compressive Sampling: Real Data 
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$ C=10.5, T=30 
$  20% Nyquist required samples  

Biometric Example: Parkinson’s Tremors 

37 

$ Tremors detected 
within 100 mHz 

$  randomly sample 
20% of the 
Nyquist required 
samples 

Biometric Example: Parkinson’s Tremors 
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Requires post processing to randomly sample! 

Implementing Compressive Sampling 

!  Devised a way to randomly sample 20% of the Nyquist 
required samples and still detect the tremor frequencies 
within 100mHz 
"  Requires post processing to randomly sample! 

!  Implement hardware on chip to “choose” samples in real 
time 
"  Only write to memory the “chosen” samples 

"  Design random-like sequence generator 
"  Only convert the “chosen” samples 

"  Design low energy ADC 
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CS Theory 

Why does it work? 
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Sampling 
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Compressive Sampling 
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How Can It Work? 
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How Can It Work? 
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How Can It Work? 
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How Can It Work? 
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RIP 
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CS Signal Recovery 
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CS Signal Recovery 
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L2 Signal Recovery 
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L0 Signal Recovery 
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L1 Signal Recovery 
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x̂

Universality 

53 Penn ESE 531 Spring 2020 - Khanna 

Universality 
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Universality 
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Reference Slide 
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Big Ideas 
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!  Compressive Sampling 
"  Integrated sensing/sampling, compression and processing 
"  Based on sparsity and incoherency 

Admin 

!  Final Project due – Apr 28th 
"  TA advice – “The report takes time.  Leave time for it.” 

!  Last day of TA office hours – Apr 28th 

"  Piazza still available 
"  Review session for exam TBD 

!  Last day of Tania office hours – May 1st 
!  Final Exam – May 7th 
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Final Exam Admin 

!  Final Exam – 5/7 (3pm-5pm) 
"  In Canvas 

"  Will have a 2 hr window to complete within a 12 hr time 
block  

"  Open course notes and textbook, but cannot communicate with 
each other about the exam 

"  Students will have randomized and different questions  
"  Reminder, it is not in your best interest to share the exam 

"  Old exams posted on old course websites 
"  Covers Lec 1- 20  

"  Does not include lec 12 (data converters and noise shaping) 
or IIR Filters 
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