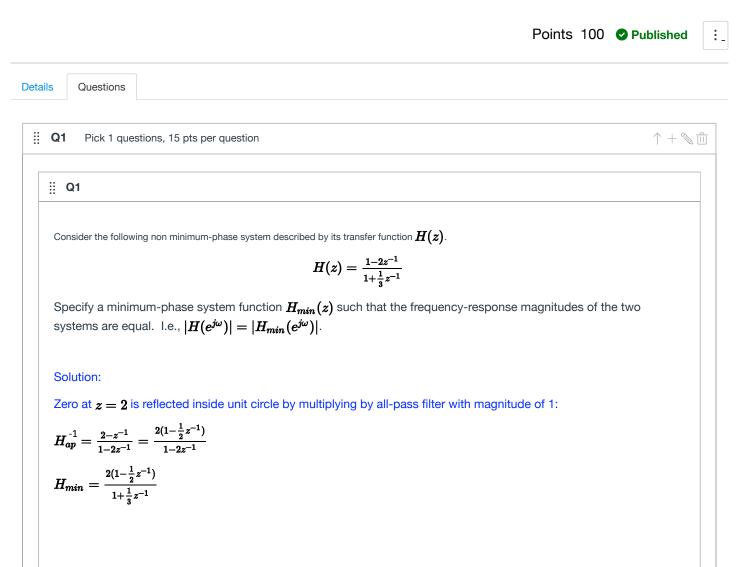
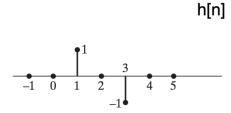
① Students have either already taken or started taking this quiz, so be careful about editing it. If you change any quiz questions in a significant way, you may want to consider regrading students who took the old version of the quiz.



Below is the impulse response, $m{h}[m{n}]$, for an LTI system. Determine the group delay of the system.

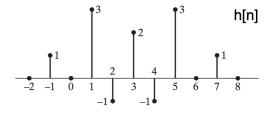


Solution:

Due to the symmetry of the impulse response, the system has generalized linear phase of $arg[H(e^{j\omega})] = \beta - n_0\omega$ where n_0 is the point of symmetry in the impulse response. Group delay is the negative derivate of the phase, which is just n_0 . Therefore by inspection above group delay = 2.

:: Q2

Below is the impulse response, $m{h}[m{n}]$, for an LTI system. Determine the group delay of the system.

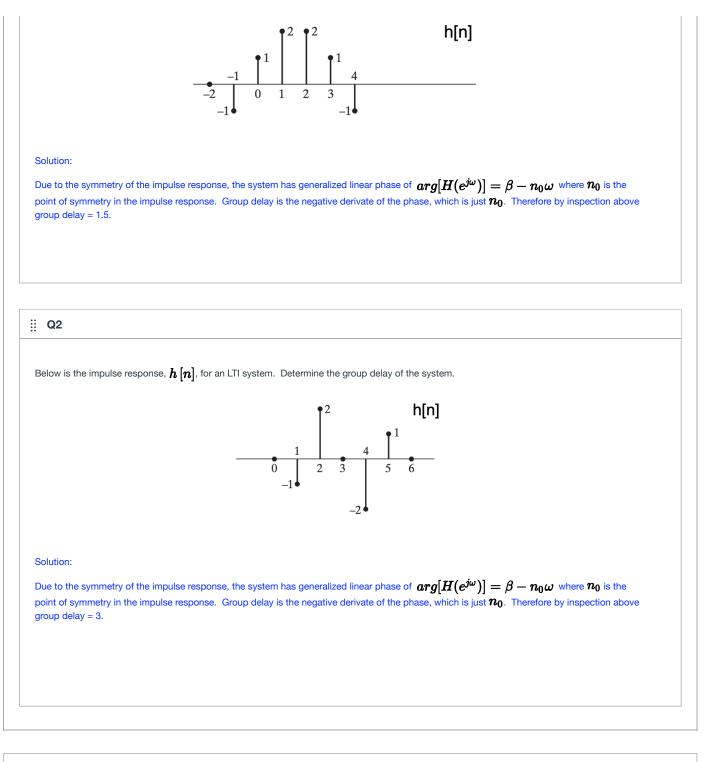


Solution:

Due to the symmetry of the impulse response, the system has generalized linear phase of $arg[H(e^{j\omega})] = \beta - n_0\omega$ where n_0 is the point of symmetry in the impulse response. Group delay is the negative derivate of the phase, which is just n_0 . Therefore by inspection above group delay = 3.

:: Q2

Below is the impulse response, $\boldsymbol{h}\left[\boldsymbol{n}\right]$, for an LTI system. Determine the group delay of the system.



Q3 Pick 1 questions, 30 pts per question	$\uparrow + $ fi
ii Q3Soln	
Solution:	
a) The DTFT is given by: $\hat{X}(e^{j\omega})=X(e^{j\omega})+X(e^{j\omega})e^{-j\omega N}=X(e^{j\omega})(1+e^{-j\omega N})$	
The DFT is samples of the DTFT:	

$$egin{aligned} \hat{X}[k] &= \hat{X}(e^{j\omega})|_{\omega=rac{2\pi k}{2N}} \ &= X(e^{j2\pi k/2N})(1+(-1)^k) \end{aligned}$$

$$= X(e^{j2\pi n/24})(1 + (-1)^{n})$$

$$=X(e^{j2\pi k/2N})(1+(-1)^k)$$

$$= X(e^{j2\pi\kappa/2N})(1 +$$

$$=X(e^{j2\pi k/2N})(1+(-1))$$

$$= \mathbf{X} (e^{j 2 \pi i \theta / 2 \pi i}) (1 + (-1)$$

$$-\mathbf{A}(\mathbf{e}^{-1})(\mathbf{1}+(\mathbf{e}^{-1}))$$

$$= \mathbf{X}(\mathbf{e}^{\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{x}_{3}})(\mathbf{1} + (-\mathbf{1})$$

$$= X(e^{j 2\pi n/2n})(1 + (-$$

$$=X(e^{j2\pi\kappa/2N})(1+(-$$

$$= \mathbf{X}(\mathbf{e}^{\mathbf{x},\mathbf{x},\mathbf{y},\mathbf{x},\mathbf{y}})(\mathbf{1} + (-\mathbf{1})$$

$$= \mathbf{X}(\mathbf{e}^{-1})(\mathbf{1} + (-\mathbf{1}))$$

$$\hat{\mathbf{x}}_{[L]} = \int 2X[\frac{k}{2}] \quad \text{k even}$$

$$\hat{X}[k] = egin{cases} 2X[rac{k}{2}] & ext{k even} \ 0 & ext{k odd} \end{cases}$$

$$\hat{Y}[k] = \hat{X}[k]H[k]$$

From figure 2:

W[k] = G[k]X[k]

 $\pmb{W}[\pmb{k}]$ is a downsampled version of $\, \hat{\pmb{Y}}[\pmb{k}]$, therefore:

$$egin{aligned} W[k] &= \hat{Y}[2k] \ G[k]X[k] &= \hat{X}[2k]H[2k] = 2X[k]H[2k] \end{aligned}$$

This simplifies to:

G[k] = 2H[2k]

G[k] is two times the even samples of the 2N-point DFT of H, which we know can be found by time aliasing h[n] with N points. See the decimation-in-frequency FFT for more information. Therefore g[n] = 2(h[n] + h[n + N]) , and system A time aliases and multiplies by 2.

For system B we need:

$$Y[k] = egin{cases} W[rac{k}{2}] & ext{k even} \ 0 & ext{k odd} \end{cases}$$

Thus System B regenerates the 2N-point sequence by repeating w[n].

:: Q3

Let x[n] be an N-point sequence such that x[n]=0 for n<0 and for n>N-1. Let $\hat{x}[n]$ be the 2N-point sequence obtained by repeating $\boldsymbol{x}\left[\boldsymbol{n}
ight]$; i.e.,

$$\hat{x}[n] = egin{cases} x[n] & 0 \leq n \leq N-1 \ x[n-N] & N \leq n \leq 2N-1 \ 0 & else \end{cases}$$

Consider the implementation of a discrete-time filter shown in Figure 1 below. This system has an impulse response h[n] that is 2N points long; i.e., $h\left[n
ight]=0$ for n<0 and for n>2N-1 .

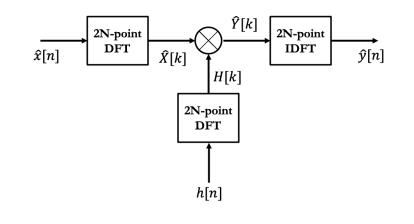
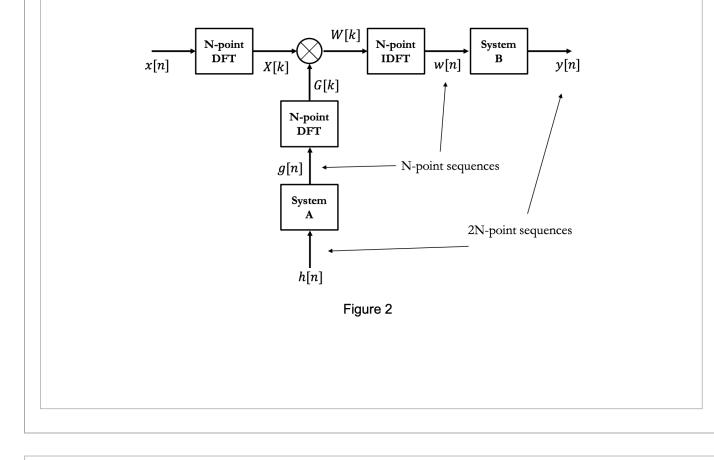


Figure 1

a) In Figure 1, what is $\hat{X}[k]$, the 2N-point DFT of $\hat{x}[n]$, in terms of X[k], the N-point DFT of x[n]? Hint: start by writing $\hat{X}(e^{j\omega})$ in terms of $X(e^{j\omega})$.

b) The system from Figure 1 can be implemented using only N-point DFTs as indicated in Figure 2 below for appropriate choices for System A and System B. Specify System A and System B so that $\hat{y}[n]$ in Figure 1 and y[n] in Figure 2 are equal for $0 \le n \le 2N - 1$. Note that h[n] and y[n] in Figure 2 are 2N-point sequences and w[n] and g[n] are N-point sequences. Be careful with the DFT and sequence lengths in your analysis. You can specify systems A and B with equations or a functional description.



Let x [n] and h [n] be two finite duration sequences of length L = 6; i.e., x [n] = h [n] = 0 for n < 0 and $n \ge 6$. Let $X_6 [k]$ and $H_6 [k]$ denote 6-point DFT's of x [n] and h [n], respectively. The 6-point inverse DFT of the product $Y_6 [k] = X_6 [k] H_6 [k]$, denoted $y_6[n]$, produces the following values:

n	0	1	2	3	4	5
$y_6[n]$	21	20	19	18	17	16

Let $X_8[k]$ and $H_8[k]$ denote the 8-point DFT's of the aforementioned sequences x[n] and h[n]. The 8-point inverse DFT of the product $Y_8[k] = X_8[k] H_8[k]$, denoted $y_8[n]$, produces the following values:

n	0	1	2	3	4	5	6	7
$y_8[n]$	12	15	14	14	16	16	15	9

Given $y_6[n]$ and $y_8[n]$, find the linear convolution of x[n] and h[n]. I.e., determine the numerical values of y[n] = x[n] * h[n].

Solution:

Because x[n] and h[n] are both length 6, the linear convolution will have length, L=2*6-1=11. Therefore the 6-point and 8-point IDFTs, $y_6[n]$ and $y_8[n]$ are time aliased versions of y[n] = x[n] * h[n], such that $y_6[n] = y[n] + y[n+6]$ and $y_8[n] = y[n] + y[n+8]$. With these two relationships you can derive the following equations:

 $\begin{array}{l} y_6[0] = y[0] + y[6] = 21 \\ y_6[1] = y[1] + y[7] = 20 \\ y_6[2] = y[2] + y[8] = 19 \\ y_6[3] = y[3] + y[9] = 18 \\ y_6[4] = y[4] + y[10] = 17 \\ y_6[5] = y[5] = 16 \end{array}$

and

 $\begin{array}{l} y_8[0] = y[0] + y[8] = 12 \\ y_8[1] = y[1] + y[9] = 15 \\ y_8[2] = y[2] + y[10] = 14 \\ y_8[3] = y[3] = 14 \\ y_8[4] = y[4] = 16 \\ y_8[5] = y[5] = 16 \\ y_8[6] = y[6] = 15 \\ y_8[7] = y[7] = 9 \end{array}$

From these equations the linear convolution $\boldsymbol{y}(\boldsymbol{n})$ can be derived as:

y[n] = [6 11 13 14 16 16 15 9 6 4 1]

Let x [n] and h [n] be two finite duration sequences of length L = 6; i.e., x [n] = h [n] = 0 for n < 0 and $n \ge 6$. Let $X_6 [k]$ and $H_6 [k]$ denote 6-point DFT's of x [n] and h [n], respectively. The 6-point inverse DFT of the product $Y_6 [k] = X_6 [k] H_6 [k]$, denoted $y_6[n]$, produces the following values:

n	0	1	2	3	4	5
$y_6[n]$	21	21	21	21	21	21

Let $X_9[k]$ and $H_9[k]$ denote the 9-point DFT's of the aforementioned sequences x[n] and h[n]. The 9-point inverse DFT of the product $Y_9[k] = X_9[k] H_9[k]$, denoted $y_9[n]$, produces the following values:

n	0	1	2	3	4	5	6	7	8
$y_9[n]$	9	12	15	18	20	21	15	10	6

Given $y_6[n]$ and $y_9[n]$, find the linear convolution of x[n] and h[n]. I.e., determine the numerical values of y[n] = x[n] * h[n].

Solution:

See above for solution methodology.

₿ Q4

Let $\boldsymbol{x}[n]$ and $\boldsymbol{h}[n]$ be two finite duration sequences of length L = 7; i.e., $\boldsymbol{x}[n] = \boldsymbol{h}[n] = 0$ for n < 0 and $n \ge 7$. Let $X_7[k]$ and $H_7[k]$ denote 7-point DFT's of $\boldsymbol{x}[n]$ and $\boldsymbol{h}[n]$, respectively. The 7-point inverse DFT of the product $Y_7[k] = X_7[k]H_7[k]$, denoted $\boldsymbol{y}_7[n]$, produces the following values:

n	0	1	2	3	4	5	6
$y_7[n]$	20	19	18	17	18	19	20

Let X_{11} [k] and H_{11} [k] denote the 11-point DFT's of the aforementioned sequences x [n] and h [n]. The 11-point inverse DFT of the product Y_{11} $[k] = X_{11}$ [k] H_{11} [k], denoted y_{11} [n], produces the following values:

n	0	1	2	3	4	5	6	7	8	9	10
$y_{11}[n]$	10	11	11	11	13	15	20	15	12	7	6

Given $y_7[n]$ and $y_{11}[n]$, find the linear convolution of x[n] and h[n]. I.e., determine the numerical values of y[n] = x[n] * h[n].

Solution:

See above for solution methodology.

₩ Q4

Let $\boldsymbol{x}[\boldsymbol{n}]$ and $\boldsymbol{h}[\boldsymbol{n}]$ be two finite duration sequences of length L = 7; i.e., $\boldsymbol{x}[\boldsymbol{n}] = \boldsymbol{h}[\boldsymbol{n}] = 0$ for $\boldsymbol{n} < 0$ and $\boldsymbol{n} \ge 7$. Let $X_7[\boldsymbol{k}]$ and $H_7[\boldsymbol{k}]$ denote 7-point DFT's of $\boldsymbol{x}[\boldsymbol{n}]$ and $\boldsymbol{h}[\boldsymbol{n}]$, respectively. The 7-point inverse DFT of the product $Y_7[\boldsymbol{k}] = X_7[\boldsymbol{k}]H_7[\boldsymbol{k}]$, denoted $\boldsymbol{y}_7[\boldsymbol{n}]$, produces the following values:

n	0	1	2	3	4	5	6
$y_7[n]$	20	20	20	20	20	20	20

Let $X_{10}[k]$ and $H_{10}[k]$ denote the 10-point DFT's of the aforementioned sequences x[n] and h[n]. The 10-point inverse DFT of the product $Y_{10}[k] = X_{10}[k] H_{10}[k]$, denoted $y_{10}[n]$, produces the following values:

n	0	1	2	3	4	5	6	7	8	9
$y_{10}[n]$	11	13	17	14	15	16	20	15	12	7

Given $y_7[n]$ and $y_{10}[n]$, find the linear convolution of x[n] and h[n]. I.e., determine the numerical values of y[n] = x[n] * h[n].

Solution:

See above for solution methodology.

Q5 Pick 1 questions, 10 pts per question

 $\uparrow + \mathbb{G}$

Q5
How are the DTFT and the DFT of a discrete-time sequence related? Be specific and explain clearly. Graphs and equations may be helpful in explaining.
Solution: The DFT is uniform samples of the DTFT over the range 0 to 2pi.
ii Q5
How are the DFT and FFT of a discrete-time sequence related? Be specific and explain clearly. Graphs and equations may be helpful in explaining.

Solution:

They are the san	ne. The FFT is just a faster computation of the DFT, because it requires less multiplications.
ii Q5	
How are the DTF in explaining.	T and Z-transform of a discrete-time sequence related? Be specific and explain clearly. Graphs and equations may be helpful
Solution:	
The DTFT is the	Z-transform evaluated at $z=e^{j\omega}$.

	0 pts
Upload a single file (,pdf preferred) of your answers with work here for grading and partial credit.	
opioad a single life (,put preferred) of your answers with work here for grading and partial credit.	

	+ <u>New Question</u>	+ <u>New Question Group</u>	Q Find Questions		
□ Notify users this quiz has changed Cancel Save					